Skip to main content
Log in

Energetics of X-Class Flares at the Minima of 22, 23, and 24 Solar Cycles

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Quite often powerful flares occur during a decrease of solar activity. In this work, we make an attempt to consider X-class flares at the minima of solar activity cycles as a separate group of events. Out of nine X-class flares we selected three such events that occurred at the minima of solar cycles 22–24: SOL1996-07-09T-09:09 (X2.6), SOL2006-12-13T-10:26 (X3.4), and SOL2017-09-06T-11:53 (X9.3); they were well observed by various instruments. All three selected flares are characterized by significant gamma-ray emission, which indicates ion acceleration during the impulsive phase. For the selected events, we estimated the energetics and distribution of the released free energy of the magnetic field between different flare components, including thermal energy and the energy of accelerated electrons and ions. No preferred energy-release channels have been identified for the considered flares at the solar activity minima. It turned out that the amount of magnetic free energy is several times higher than the amount of thermal energy and the energy of accelerated electrons and ions; the possible causes of this imbalance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Anfinogentov, S.A., Stupishin, A.G., Mysh’yakov, I.I., and Fleishman, G.D., Record-breaking coronal magnetic field in solar active region 12673, Astrophys. J. Lett., 2019, vol. 880, no. 2, id L29.

  2. Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., et al., Konus-W gamma-ray burst experiment for the GGS Wind Spacecraft, Space Sci. Rev., 1995, vol. 71, pp. 265–272.

    Article  Google Scholar 

  3. Brown, J.C., The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts, Sol. Phys., 1971, vol. 18, no. 3, pp. 489–502.

    Article  Google Scholar 

  4. Emslie, A.G., Dennis, B.R., Shih, A.Y., et al., Global energetics of thirty-eight large solar eruptive events, Astrophys. J., 2012, vol. 759, id 1.

  5. Gary, D.E., Chen, B., Dennis, B.R., et al., Microwave and hard X-ray observations of the 2017 September 10 solar limb flare, Astrophys. J., 2018, vol. 863, id 83.

  6. Guo, Y. and Ding, M.D., 3D magnetic field configuration of the 2006 December 13 flare extrapolated with the optimization method, Astrophys. J., 2008, vol. 679, pp. 1629–1635.

    Article  Google Scholar 

  7. Hathaway, D.H., The solar cycle, Living Rev. Sol. Phys., 2015, vol. 12, no. 1, id 4.

  8. Hua, X.M. and Lingenfelter, R.E., Solar flare neutron production and the angular dependence of the capture gamma-ray emission, Sol. Phys., 1987, vol. 107, no. 2, pp. 351–383.

    Article  Google Scholar 

  9. Knipp, D.J., Ramsay, A.C., Beard, E.D., et al., The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses, Space Weather, 2016, vol. 14, no. 9, pp. 614–633.

    Article  Google Scholar 

  10. Kosovichev, A.G. and Zharkova, V.V., X-ray flare sparks quake inside sun, Nature, 1998, vol. 393, no. 6683, pp. 317–318.

    Article  Google Scholar 

  11. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, no. 1, pp. 3–32.

    Article  Google Scholar 

  12. Lysenko, A.L., Anfinogentov, S.A., Svinkin, D.S., Frederiks, D.D., and Fleishman, G.D., Gamma-ray emission from the impulsive phase of the 2017 September 6 X9.3 flare, Astrophys. J., 2019, vol. 877, no. 2, id 145.

  13. Mewaldt, R.A., Leske, R.A., Stone, E.C., et al., STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare, Astrophys. J. Lett., 2009, vol. 693, no. 1, pp. L11–L15.

    Article  Google Scholar 

  14. Meyer, P., Parker, E.N., and Simpson, J.A., Solar cosmic rays of February 1956 and their propagation through interplanetary space, Phys. Rev., 1956, vol. 104, no. 3, pp. 768–783.

    Article  Google Scholar 

  15. Murphy, R.J., Kozlovsky, B., Kiener, J., and Share, G.H., Nuclear gamma-ray de-excitation lines and continuum from accelerated-particle interactions in solar flares, Astrophys. J. Suppl. Ser., 2009, vol. 183, no. 1, pp. 142–155.

    Article  Google Scholar 

  16. Omodei, N., Pesce-Rollins, M., Longo, F., Allafort, A., and Krucker, S., Fermi-LAT observations of the 2017 September 10 solar flare, Astrophys. J. Lett., 2018, vol. 865, id L7.

  17. Ramaty, R., Kozlovsky, B., and Lingenfelter, R.E., Solar gamma rays, Space Sci. Rev., 1975, vol. 18, no. 3, pp. 341–388.

    Article  Google Scholar 

  18. Raymond, J.C., Cox, D.P., and Smith, B.W., Radiative cooling of a low-density plasma, Astrophys. J., 1976, vol. 204, pp. 290–292.

    Article  Google Scholar 

  19. Rudenko, G.V. and Anfinogentov, S.A., Algorithms of the potential field calculation in a three-dimensional box, Sol. Phys., 2017, vol. 292, no. 8, id 103.

  20. Solanki, S.K., Usoskin, I.G., Kromer, B., et al., Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 2004, vol. 431, no. 7012, pp. 1084–1087.

    Article  Google Scholar 

  21. Syrovatskii, S.I. and Shmeleva, O.P., Plasma heating by fast electrons and nonthermal X-ray radiation during solar flares, Astron. Zh., 1972, vol. 49, pp. 334–347.

    Google Scholar 

  22. Vilmer, N., Mackinnon, A.L., and Hurford, G.J., Properties of energetic ions in the solar atmosphere from γ-ray and neutron observations, Space Sci. Rev., 2011, vol. 159, nos. 1–4, pp. 167–224.

    Article  Google Scholar 

  23. Wheatland, M.S., Sturrock, P.A., and Roumeliotis, G., An optimization approach to reconstructing force-free fields, Astrophys. J., 2000, vol. 540, no. 2, pp. 1150–1155.

    Article  Google Scholar 

  24. White, S.M., Thomas, R.J., and Schwartz, R.A., Updated expressions for determining temperatures and emission measures from GOES soft S-ray measurements, Sol. Phys., 2005, vol. 227, no. 2, pp. 231–248.

    Article  Google Scholar 

  25. Yang, S., Zhang, J., Zhu, X., and Song, Q., Block-induced complex structures building the flare-productive solar active region 12 673, Astrophys. J. Lett., 2017, vol. 849, no. 2, id L21.

  26. Zharkova, V.V. and Gordovskyy, M., The kinetic effects of electron beam precipitation and resulting hard X-ray intensity in solar flares, Astron. Astrophys., 2005, vol. 432, no. 3, pp. 1033–1047.

    Article  Google Scholar 

Download references

Funding

G.G. Motorina and A.L. Lysenko acknowledge the support of the Russian Foundation for Basic Research, project no. mol_a 18-32-00439. G.G. Motorina also acknowledges the project RVO:67985815 and the project LM2015067: EU-ARC.CZ—National Research Infrastructure by Ministry of Education of the Czech Republic. G.D. Fleishman acknowledges the support of NSF grant AGS-1 817 277 and NASA grants 80NSSC18K0667, 80NSSC19K0068, 80NSSC18K1128, and 80NSSC20K0627. S.A. Anfinogentov acknowledges the support of the Basic Research Program II.16 and the Russian Foundation for Basic Research, project no. 19-52-53 045.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Motorina, A. L. Lysenko, S. A. Anfinogentov or G. D. Fleishman.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motorina, G.G., Lysenko, A.L., Anfinogentov, S.A. et al. Energetics of X-Class Flares at the Minima of 22, 23, and 24 Solar Cycles. Geomagn. Aeron. 60, 929–935 (2020). https://doi.org/10.1134/S001679322007018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322007018X

Navigation