Skip to main content
Log in

Characteristics of the Pitch-Angle Anisotropy of Energetic Protons in the Daytime Magnetosphere due to Particle Drift in the Nondipole Magnetic Field

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper analyzes the effect of azimuthal proton drift from the nighttime sector of the Earth’s magnetosphere on the characteristics of the pitch-angle anisotropy of proton fluxes in the daytime sector. The drift in the magnetic field caused by curvature of the field lines and the magnetic field gradient, in the absence of external forces, has been considered. The external geomagnetic field has been described with Tsyganenko’s T96 model. The proton drift has been calculated in the approximation of the guiding center motion in the equatorial magnetosphere plane, i.e., after averaging over the bounce oscillations of particles between the mirror points. The influence of two effects on the anisotropy value has been studied. The first effect is related to changes in the proton pitch angle in the course of azimuthal drift. This effect can significantly (up to approximately six times, depending on the T96 model input parameters) increase the transverse anisotropy of protons when they drift from the nighttime to the daytime side. The second effect is caused by drift-shell splitting, as a result of which protons from the nighttime sector from different radial distances come to the same field line on the daytime side: the lower the pitch angle of the particle is, the larger is the distance it starts to drift from. As a result, the radial proton flux gradient on the magnetosphere nighttime side can lead to a pitch-angle anisotropy of fluxes in the daytime sector that is sufficient to generate electromagnetic ion cyclotron (EMIC) waves, even if the fluxes in the nighttime sector were isotropic in the pitch angles. The dependence of this anisotropy on the radial proton flux gradient on the nighttime side has been studied. The maximum anisotropy in the daytime sector due to the longitudinal drift in the geomagnetic field can be achieved at a distance of 5.3–10 RE depending on the Т96 model input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Allen, R.C., Zhang, J.-C., Kistler, L.M., Spence, H.E., Lin, R.-L., Klecker, B., Dunlop, M.W., André, M., and Jordanova, V.K., A statistical study of EMIC waves observed by Cluster: 1. Wave properties, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 5574–5592. https://doi.org/10.1002/2015JA021333

    Article  Google Scholar 

  2. Anderson, B.J., Erlandson, R.E., and Zanetti, L.J., A statistical study of Pc1–2 magnetic pulsations in the equatorial magnetosphere: 1. Equatorial occurrence distributions, J. Geophys. Res., 1992, vol. 97, no. A3, pp. 3075–3088. https://doi.org/10.1029/91JA02706

    Article  Google Scholar 

  3. Ganushkina, N.Yu., Liemohn, M.W., and Pulkkinen, T.I., Storm-time ring current: Model-dependent results, Ann. Geophys., 2012, vol. 30, pp. 177–202. https://doi.org/10.5194/angeo-30-177-2012

    Article  Google Scholar 

  4. Hamlin, D.A., Karplus, R., Vik, R.C., and Watson, K.M., Mirror and azimuthal drift frequencies for geomagnetically trapped particles, J. Geophys. Res., 1961, vol. 66, pp. 1–5. https://doi.org/10.1029/JZ066i001p00001

    Article  Google Scholar 

  5. Kennel, C.F. and Petschek, H.E., Limit of stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–28. https://doi.org/10.1029/JZ071i001p00001

    Article  Google Scholar 

  6. Lubchich, A.A. and Semenova, N.V., Modeling of the electromagnetic ion cyclotron wave generation in the H+–He+ plasma of the inner magnetosphere, J. Atmos. Sol-Terr. Phys., 2015, vol. 125–126, pp. 21–37. https://doi.org/10.1016/j.jastp.2015.02.004

    Article  Google Scholar 

  7. Lubchich, A.A., Yahnin, A.G., Titova, E.E., Demekhov, A.G., Trakhtengerts, V.Yu., Manninen, J., and Turunen, T., Longitudinal drift of substorm electrons as the reason of impulsive precipitation events and VLF emissions, Ann. Geophys., 2006, vol. 24, no. 10, pp. 2667–2684. https://doi.org/10.5194/angeo-24-2667-2006

    Article  Google Scholar 

  8. Lyubchich, A.A., Demekhov, A.G., Titova, E.E., and Yahnin, A.G., Amplitude–frequency characteristics of ion–cyclotron and whistler-mode waves from Van Allen Probes data, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 40–50. https://doi.org/10.7868/S0016794017010084

  9. McCollough, J.P., Elkington, S.R., and Baker, D.N., The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth, J. Geophys. Res., 2012, vol. 117, A01208. https://doi.org/10.1029/2011JA016948

    Article  Google Scholar 

  10. Meredith, N.P., Horne, R.B., Kersten, T., Fraser, B.J., and Grew, R.S., Global morphology and spectral properties of EMIC waves derived from CRRES observations, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 5328–5342. https://doi.org/10.1002/2014JA020064

    Article  Google Scholar 

  11. Min, K., Lee, J., Keika, K., and Li, W., Global distribution of EMIC waves derived from THEMIS observations, J. Geophys. Res., 2012, vol. 117, A05219. https://doi.org/10.1029/2012JA017515

    Article  Google Scholar 

  12. Noh, S.-J., Lee, D.-Y., Choi, C.-R., Kim, H., and Skoug, R., Test of ion cyclotron resonance instability using proton distributions obtained from Van Allen Probe-A observations, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 6591–6610. https://doi.org/10.1029/2018JA025385

  13. Reeves, G.D., Belian, R.D., and Fritz, T.A., Numerical tracing of energetic particle drifts in a model magnetosphere, J. Geophys. Res., 1991, vol. 96, no. A8, pp. 13997–14008. https://doi.org/10.1029/91JA01161

    Article  Google Scholar 

  14. Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation, New York: Springer, 1970. https://doi.org/10.1007/978-3-642-49300-3.

  15. Sagdeev, R.Z. and Shafranov, V.D., On the instability of a plasma with an anisotropic distribution of velocities in a magnetic field, Sov. Phys. JETP, 1961, vol. 12, no. 1, pp. 130–132.

    Google Scholar 

  16. Saikin, A.A., Zhang, J.-C., Allen, R.C., Smith, C.W., Kistler, L.M., Spence, H.E., Torbert, R.B., Kletzing, C.A., and Jordanova, V.K., The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 7477–7492. https://doi.org/10.1002/2015JA021358

    Article  Google Scholar 

  17. Semenova, N.V., Yahnina, T.A., Yahnin, A.G., and Demekhov, A.G., Global distribution of energetic proton precipitations equatorward of the boundary of isotropic fluxes, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 4, pp. 398–405. https://doi.org/10.7868/S0016794017040174

  18. Semenova, N.V., Yahnin, A.G., Yahnina, T.A., and Demekhov, A.G., Properties of localized precipitation of energetic protons equatorward of the isotropic boundary, Geophys. Res. Lett., 2019, vol. 46, no. 20, pp. 10932–10940. https://doi.org/10.1029/2019GL085373

    Article  Google Scholar 

  19. Shabansky, V.P., Some processes in magnetosphere, Space Sci. Rev., 1971, vol. 12, no. 3, pp. 299–418. https://doi.org/10.1007/BF00165511

    Article  Google Scholar 

  20. Shabansky, V.P., Yavleniya v okolozemnom prostranstve (Near-Earth Space Phenomena), Moscow: Nauka, 1972.

  21. Shukhtina, M.A. and Sergeev, V.A., Modeling the drift of energetic particles in the real magnetosphere near a geosynchronous orbit, Geomagn. Aeron., 1991, vol. 31, no. 5, pp. 775–780.

    Google Scholar 

  22. Shukhtina, M.A., On the calculation of the magnetic drift velocity of particles with arbitrary pitch angles, Planet. Space Sci., 1993, vol. 41, no. 4, pp. 327–331. https://doi.org/10.1016/0032-0633(93)90028-Z

    Article  Google Scholar 

  23. Takahashi, K., Anderson, B.J., Ohtani, S., Reeves, G.D., Takahashi, S., Sarris, T.E., and Mursula, K., Drift-shell splitting of energetic ions injected at pseudo-substorm onsets, J. Geophys. Res., 1997, vol. 102, pp. 22117–22130. https://doi.org/10.1029/97JA01870

    Article  Google Scholar 

  24. Tsyganenko, N.A., A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 1989, vol. 37, no. 1, pp. 5–20. https://doi.org/10.1016/0032-0633(89)90066-4

    Article  Google Scholar 

  25. Tsyganenko, N.A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 1995, vol. 100, no. A4, pp. 5599–5612. https://doi.org/10.1029/94JA03193

    Article  Google Scholar 

  26. Tsyganenko, N.A., Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based field models, in Proceedings of the 3rd International Conference on Substorms (ICS-3), Versailles, France, 12–17 May 1996 (ESA SP-389), Rolfe, E.J. and Kaldeich, B., Eds., Paris: European Space Agency, 1996, pp. 181‒185.

  27. Tsyganenko, N.A. and Usmanov, A.V., Determination of the magnetospheric current system parameters and development of experimental geomagnetic field models based on data from IMP and HEOS satellites, Planet. Space Sci., 1982, vol. 30, pp. 985–998. https://doi.org/10.1016/0032-0633(82)90148-9

    Article  Google Scholar 

  28. Wang, C.-P., Zaharia, S.G., Lyons, L.R., and Angelopoulos, V., Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 244–255. https://doi.org/10.1029/2012JA018275.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 15-12-20005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Demekhov.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubchich, A.A., Demekhov, A.G. & Yahnin, A.G. Characteristics of the Pitch-Angle Anisotropy of Energetic Protons in the Daytime Magnetosphere due to Particle Drift in the Nondipole Magnetic Field. Geomagn. Aeron. 60, 461–471 (2020). https://doi.org/10.1134/S001679322004009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322004009X

Navigation