Skip to main content
Log in

Monitoring of the Electron-Acceleration Region with Auroral Kilometric Radiation

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A method is proposed for the study of the height–time characteristics of physical processes in the region of auroral electron acceleration. Auroral kilometer radiation, which is generated at the local electron gyrofrequency, can be used to obtain the height distribution of the properties of a radiation source in the auroral region, and long-term satellite measurements of the auroral kilometric radiation allows the evolution of these features to be tracked over time. This approach to the analysis of auroral kilometric radiation makes it possible to obtain data remotely on variations in the features of its source concurrently along the magnetic field line of the acceleration region. This approach has been used here to analyze the auroral kilometric radiation recorded on the INTERBALL-2 satellite within the POLRAD experiment. The analysis has revealed a regular change in the wavelet spectra of fluctuations in the auroral kilometric radiation along the magnetic field line. In the given frequency range with an almost constant radiation intensity, the fluctuation spectrum follows a power law at high altitudes and becomes uniform over all characteristic times at low altitudes. This spectral transformation indicates that the processes in the source of auroral kilometric radiation are nonlinear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alexander, J.K. and Kaiser, M.L., Terrestrial kilometric radiation: 1. Spatial structure studies, J. Geophys. Res., 1976, vol. 81, no. 34, pp. 5948–5956. https://doi.org/10.1029/JA081i034p05948

    Article  Google Scholar 

  2. Benediktov, E.A., Getmantsev, G.G., Mityakov, N.A., Rapoport, V.O., Sazonov, Yu.A., and Tarasov, A.F., Results of radio emission intensity measurements at frequencies of 725 and 1525 kHz with instruments installed on the ELEKTRON-2 satellite, in Issledovaniya kosmicheskogo prostranstva (Cosmic Space Research), Skudrin, G.A., Ed., Moscow: Nauka, 1965, pp. 581–606.

  3. Benson, R.F., Calvert, W., and Klumpar, D., Simultaneous wave and particle observations in the auroral kilometric source region, Geophys. Res. Lett., 1980, vol. 7, pp. 959–962. https://doi.org/10.1029/GL007i011p00959

    Article  Google Scholar 

  4. Bingham, R., Speirs, D., Kellett, B., Vorgul, I., McConville, S.L., Cairns, R.A., Cross, A.W., Phelps, A.D.R., and Ronald, K., Laboratory astrophysics: Investigation of planetary and astrophysical maser emission, Space Sci. Rev., 2013, vol. 178, pp. 695–713. https://doi.org/10.1007/s11214-013-9963-z

    Article  Google Scholar 

  5. Burinskaya, T.M. and Rauch, J.-L., Waveguide regime of cyclotron maser instability in plasma regions of depressed density, Plasma Phys. Rep., 2007, vol. 33, no. 1, pp. 28–37.

    Article  Google Scholar 

  6. Burinskaya, T.M. and Rauch, J.-L., Auroral kilometric radiation from a nonstationary thin plasma cavity, Ann. Geophys., 2012, vol. 30, pp. 1093–1097. https://doi.org/10.5194/angeo-30-1093-2012

    Article  Google Scholar 

  7. Calvert, W., The auroral plasma cavity, Geophys. Res. Lett., 1981, vol. 8, no. 8, pp. 919–921. https://doi.org/10.1029/GL008i008p00919

    Article  Google Scholar 

  8. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Fractal approach to the description of the auroral region, Plasma Phys. Rep., 2013a, vol. 39, no. 7, pp. 562–571. https://doi.org/10.7868/S0367292113060024

    Article  Google Scholar 

  9. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Use of fractal approach to investigate ionospheric conductivity in the auroral zone, J. Geophys. Res., 2013b, vol. 118, no. 7, pp. 4108–4118. https://doi.org/10.1002/jgra.50321

    Article  Google Scholar 

  10. Chernyshov, A.A., Kozelov, B.V., Mogilevsky, M.M., Study of auroral ionosphere using percolation theory and fractal geometry, J. Atmos. Sol-Terr. Phys., 2017, vol. 161, pp. 127–133.https://doi.org/10.1016/j.jastp.2017.06.013

  11. Daubechies, I., Ten Lectures on Wavelets, Philadelphia: SIAM, 1992. https://doi.org/10.1137/1.9781611970104

    Book  Google Scholar 

  12. Dremin, I.M., Ivanov, O.V., and Nechitailo, V.A., Wavelets and their uses, Phys.-Usp., 2001, vol. 44, no. 5, pp. 445–478.

    Article  Google Scholar 

  13. Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL project to study solar–terrestrial physics, Cosmic Res., 1996, vol. 34, no. 4, pp. 313–333.

    Google Scholar 

  14. Golovchanskaya, I.V., Ostapenko, A.A., and Kozelov, B.V., Relationship between the high-latitude electric and magnetic turbulence and the Birkeland field-aligned currents, J. Geophys. Res., 2006, vol. 111, A12301. https://doi.org/10.1029/2006JA011835

    Article  Google Scholar 

  15. Golovchanskaya, I.V., Kozelov, B.V., Sergienko, T.I., Brändström, U., Nilsson, H., Sandahl, I., Scaling behavior of auroral luminosity fluctuations observed by Auroral Large Imaging System (ALIS), J. Geophys. Res., 2008, vol. 113, no. A10, A10303. https://doi.org/10.1029/2008JA013217

    Article  Google Scholar 

  16. Golovchanskaya, I.V., Kozelov, B.V., and Despirak, I.V., Investigation of the broadband ELF turbulence by observations of the FAST satellite, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 474–481.

  17. Gurnett, D.A., The Earth as a radio source: Terrestrial kilometric radiation, J. Geophys. Res., 1974, vol. 79, no. 28, pp. 4227–4238. https://doi.org/10.1029/JA079i028p04227

    Article  Google Scholar 

  18. Hanasz, J., Krawczyk, Z., Mogilevsky, M.M., et al., Observation of auroral kilometric radiation on the INTERBALL-2 satellite: The POLRAD experiment, Cosmic Res., 1998, vol. 36, no. 6, pp. 575–586.

    Google Scholar 

  19. Kozelov, B.V. and Golovchanskaya, I.V., Derivation of aurora scaling parameters from groundbased imaging observations: numerical tests, J. Geophys. Res., 2010, vol. 115, p. A02204.https://doi.org/10.1029/2009JA014484

    Article  Google Scholar 

  20. Kozelov, B.V., Golovchanskaya, I.V., Ostapenko, A.A., and Fedorenko, Y.V., Wavelet analysis of high-latitude electric and magnetic fluctuations observed by the Dynamic Explorer 2 satellite, J. Geophys. Res., 2008, vol. 113, A03308. https://doi.org/10.1029/2007JA012575

    Article  Google Scholar 

  21. Kurth, W.S., Baumback, M.M., and Gurnett, D.A., Direction-finding measurements of auroral kilometric radiation, J. Geophys. Res., 1975, vol. 80, no. 19, pp. 2764–2770. https://doi.org/10.1029/JA080i019p02764

    Article  Google Scholar 

  22. Lund, E.J., On the dissipation scale of broadband ELF waves in the auroral region, J. Geophys. Res., 2010, vol. 115, A01201. https://doi.org/10.1029/2009JA014545

    Article  Google Scholar 

  23. Mallat, S., A Wavelet Tour of Signal Processing, Amsterdam: Elsevier, 1999; Moscow: Mir, 2005.

  24. Milovanov, A.V., Zelenyi, L.M., and Zimbardo, G., Fractal structures and power law spectra in the distant Earth’s magnetotail, J. Geophys. Res., 1996, vol. 101, no. A9, pp. 19 903–19 910. https://doi.org/10.1029/96JA01562

    Article  Google Scholar 

  25. Mogilevsky, M.M., Romantsova, T.V., Hanasz, J., Burinskaya, T.M., and Schreiber, R., On the source of auroral kilometric radiation, JETP Lett., 2008, vol. 86, no. 11, pp. 709–711.

    Article  Google Scholar 

  26. Moiseenko, I.L., Mogilevsky, M.M., and Romantsova, T.V., Burst structure of auroral kilometric radiation, Dokl. Phys., 2013, vol. 58, no. 5, pp. 224–227.

    Article  Google Scholar 

  27. Shalashov, A.G., Viktorov, M.E., Mansfeld, D.A., and Golubev, S.V., Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation, Phys. Plasmas, 2017, vol. 24, no. 3, p. 032 111. https://doi.org/10.1063/1.4964161

    Article  Google Scholar 

  28. Tam, S.W.Y., Chang, T., Kintner, P.M., and Klatt, E., Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone, Geophys. Res. Lett., 2005, vol. 32, L05109. https://doi.org/10.1029/2004GL021445

    Article  Google Scholar 

  29. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, pp. 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  30. Uritsky, V.M., Klimas, A.J., Vassiliadis, D., Chua, D., and Parks, G., Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system, J. Geophys. Res., 2002, vol. 107, no. A12, pp. SMP7-1–SMP7-11. https://doi.org/10.1029/2001JA000281

  31. Viktorov, M.E., Golubev, S.V., Gospodchikov, E.D., Izotov, I.V., Mansfel’d, D.A., and Shalashov, A.G., On the mechanism of energetic electron losses from the magnetic mirror trap at the ECR discharge startup, Radiophys. Quantum Electron., 2013, vol. 56, no. 4, pp. 216–227.

    Article  Google Scholar 

  32. Voots, G.R., Gurnett, D.A., and Akasofu, S.-I., Auroral kilometric radiation as an indicator of auroral magnetic disturbances, J. Geophys. Res., 1977, vol. 82, no. 16, pp. 2259–2266. https://doi.org/10.1029/JA082i016p02259

    Article  Google Scholar 

  33. Wu, C.S. and Lee, L.C., A theory of the terrestrial kilometric radiation, Astrophys. J., 1979, vol. 230, pp. 621–626. https://doi.org/10.1086/157120

    Article  Google Scholar 

  34. Zarka, P., Auroral radio emissions at the outer planets: Observations and theories, J. Geophys. Res., 1998, vol. 103, no. E9, pp. 20 159–20 194. https://doi.org/10.1029/98JE01323

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers, whose comments stimulated significant improvement of the manuscript.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-21037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Chugunin.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugunin, D.V., Chernyshov, A.A., Moiseenko, I.L. et al. Monitoring of the Electron-Acceleration Region with Auroral Kilometric Radiation. Geomagn. Aeron. 60, 538–546 (2020). https://doi.org/10.1134/S0016793220040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220040039

Navigation