Skip to main content
Log in

Magnetic Field Variations and Dynamics of the Outer Electron Radiation Belt of the Earth’s Magnetosphere in February 2014

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper presents the results of a comparative analysis of the dynamics of relativistic electron fluxes of the Earth’s outer radiation belt and correspondent ring current and magnetospheric magnetic field variations for February 15–22, 2014, based on experimental data obtained in the radiation belt core aboard Van Allen Probes satellites and in geostationary orbit aboard the GOES-15 satellite. The A2000 paraboloid model of the magnetosphere is used to calculate the contributions of main magnetospheric current systems to the Dst variation. The influence of external factors—solar wind and interplanetary magnetic field—is considered. Comparison of the dynamics of electron fluxes in different orbits and the geomagnetic field variations for February 15‒22, 2014 indicate that the main mechanisms of the evolution of outer electron radiation belt are global processes: (i) outward and inward shifts of the trapped electron population inside the Earth’s magnetosphere due to large-scale variations of the magnetospheric magnetic field during geomagnetic disturbances and (ii) ExB drift of electrons from the magnetotail under the influence of electric and magnetic fields. Local particle acceleration is auxiliary process in the dynamics of radiation belts. The southward orientation of the interplanetary magnetic field is the necessary condition for an increase in the intensity of electron fluxes of the Earth’s outer radiation belt, while the function (–BzVsw) is the key external factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., Feldstein, Y.I., and Grafe, A., Magnetic storms and magnetotail currents, J. Geophys. Res., 1996, vol. 101, no. A4, pp. 7737–7747. https://doi.org/10.1029/95JA03509

    Article  Google Scholar 

  2. Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., Bobrovnikov, S.Y., Feldstein, Ya.I., and Gromova, L.I., Dynamic model of the magnetosphere: Case study for January 9–12, 1997, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25683–25694. https://doi.org/10.1029/2001JA900057

    Article  Google Scholar 

  3. Antonova, E.E., Vorobjev, V.G., Riazantseva, M.O., et al., Auroral oval and outer electron radiation belt, Physics of Auroral Phenomena" Proc. XL Annual Seminar, Apatity, 2017, pp. 6–10.

  4. Baker, D.N., Erickson, P.J., Fennell, J.F., Foster, J.C., Jaynes, A.N., and Verronen, P.T., Space weather effects in the Earth’s radiation belts, Space Sci. Rev., 2018, vol. 214, no. 17, pp. 1–60. https://doi.org/10.1007/s11214-017-0452-7

    Article  Google Scholar 

  5. Blake, J.B., Baker, D.N., Turner, N., Ogilvie, K.W., and Lepping, R.P., Correlation of changes in the outer-zone relativistic electron population with upstream solar wind and magnetic field measurements, Geophys. Res. Lett., 1997, vol. 24, no. 8, pp. 927–929. https://doi.org/10.1029/97GL00859

    Article  Google Scholar 

  6. Georgiou, M., Daglis, I.A., Rae, I.J., Zesta, E., Sibeck, D.G., Mann, I.R., Balasis, G., and Tsinganos, K., Ultra-low frequency waves as an intermediary for solar wind energy input into the radiation belts, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 10090–10108. https://doi.org/10.1029/2018JA025355

    Article  Google Scholar 

  7. Hakkinen, L., Pulkkinen, T.I., Nevanlinna, H., Pirjola, R.J., and Tanskanen, E.I., Effect of induced currents on Dst and on magnetic variations at midlatitude stations, J. Geophys. Res., 2002, vol. 107. https://doi.org/10.1029/2001JA900130

  8. Kalegaev V. V., Vlasova N. A., and Peng Z., Dynamics of the Magnetosphere during Geomagnetic Storms on January 21–22, 2015 and December 14–15, 2006, Cosmic Research, 2015, vol. 53, no. 2, pp. 98–110.

  9. Lazutin, L.L., Dmitriev, A.V., and Suvorova, A.V., Electron radiation belt dynamics during magnetic storms and in quiet time, Sol.-Terr. Phys., 2018, vol. 4, no. 1, pp. 51–60. https://doi.org/10.12737/stp-41201805

    Article  Google Scholar 

  10. Li, X., Selesnick, R.S., Baker, D.N., Jaynes, A.N., Kanekal, S.G., Schiller, Q., Blum, L., Fennell, J., and Blake, J.B., Upper limit on the inner radiation belt MeV electron intensity, J. Geophys. Res., 2015, vol. 120, no. 2, pp. 1215–1228. https://doi.org/10.1002/2014JA020777

    Article  Google Scholar 

  11. Liu, S., Xiao, F., Yang, C., et al., Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 938–948. https://doi.org/10.1002/2014JA020781

    Article  Google Scholar 

  12. Lyatsky, W. and Khazanov, G.V., Effect of solar wind density on relativistic electrons at geosynchronous orbit, Geophys. Res. Lett., 2008, vol. 35, L03109. https://doi.org/10.1029/2007GL032524

    Article  Google Scholar 

  13. McIlwain, C.E., Ring current effects on trapped particles, J. Geophys. Res., 1966, vol. 71, pp. 3623–3628.

    Article  Google Scholar 

  14. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. https://doi.org/10.1029/2006JA012015

    Article  Google Scholar 

  15. Paulikas, G.A. and Blake, J.B., Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, Quantitative Modeling of Magnetospheric Processes, 1979, vol. 21, pp. 180–186.

    Google Scholar 

  16. Pavlov, N.N., Tverskaya, L.V., Tverskoi, B.A., and Chuchkov, E.A., Variations energetic particles of radiation belts during the strong magnetic storm of March 24–26, 1991, Geomagn. Aeron., 1993, vol. 33, no. 6, pp. 41–45.

    Google Scholar 

  17. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, no. 10, pp. 1529–1564. https://doi.org/10.1029/2002GL016513

    Article  Google Scholar 

  18. Reeves, G.D., Spence, H.E., Henderson, M.G., Morley, S.K., Friedel, R.H.W., Funsten, H.O., Baker, D.N., and Kan, S.G., Electron acceleration in the heart of the Van Allen radiation belts, Science, 2013, vol. 341, pp. 991–994. https://doi.org/10.1126/science.1239879

    Article  Google Scholar 

  19. Shue, J.-H., Chao, J.K., Fu, H.C., Khurana, K.K., Russell, C.T., Singer, H.J., and Song, P., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 1998, vol. 103, pp. 17691–17700.

    Article  Google Scholar 

  20. Spence, H.E., Reeves, G.D., Baker, D.N., et al., Science goals and overview of the energetic particle, composition, and thermal plasma (ECT) suite on NASA’s radiation belt storm probes (RBSP) mission, Space Sci. Rev., 2013, pp. 311–336. https://doi.org/10.1007/s11214-013-0007-5

  21. Tsyganenko, N.A. and Sitnov, M.I., Magnetospheric configurations from a high-resolution data-based magnetic field model, J. Geophys. Res., 2007, vol. 112, A06225. https://doi.org/10.1029/2007JA012260

    Article  Google Scholar 

  22. Tverskaya, L.V., On the boundary of electron injection into the Earth’s magnetosphere, Geomagn. Aeron., 1986, vol. 26, pp. 864–869.

    Google Scholar 

  23. Tverskaya, L.V., Diagnostics of the magnetosphere based on the outer belt relativistic electrons and penetration of solar protons: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 6–23.

  24. Tverskoi, B.A., Dinamika radiatsionnykh poyasov Zemli (Dynamics of the Earth’s Radiation Belts), Moscow: Nauka, 1968; Osnovy teoreticheskoi kosmofiziki. Izbrannye trudy (Basics of Theoretical Space Physics. Selected Works), Moscow: URSS, 2004.

  25. Tverskoi, B.A., Formation mechanism for the structure of the magnetic-storm ring current, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 5, pp. 555–559.

Download references

6. ACKNOWLEDGMENTS

Data on solar wind and geomagnetic indices were obtained at the Goddard Space Flight Center of the National Aeronautics and Space Administration (NASA) (Omniweb) and at the World Data Center C2 for Geomagnetism, Kyoto. The experimental data from Van Allen Probes spacecrafts were obtained from the NASA/GSFC Space Physics Data Facility (SPDF), CDAWeb (the Coordinated Data Analysis Web) (https://cdaweb.sci.gsfc.nasa.gov).

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-05-00960) and the International Space Science Institute (ISSI and ISSI-BJ-439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vlasova.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, N.A., Kalegaev, V.V., Nazarkov, I.S. et al. Magnetic Field Variations and Dynamics of the Outer Electron Radiation Belt of the Earth’s Magnetosphere in February 2014. Geomagn. Aeron. 60, 7–19 (2020). https://doi.org/10.1134/S0016793220010144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220010144

Navigation