Skip to main content
Log in

Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A mechanism for the generation of quasi-periodic magnetic precursors of earthquakes is proposed on the basis of air heating above an impending earthquake, the rise of heated “bubbles,” the generation of acoustic–gravity waves (AGWs), the modulation of AGWs of the ionospheric current jet, and the generation of quasi-periodic oscillations of the geomagnetic field. According to estimates, the amplitude of a magnetic precursor can vary from 0.1 to 1 nT in the range of oscillation periods of ~10–1000 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Atmospheric and Ionospheric Electromagnetic Phenomena associated with Earthquakes, Hayakawa, M., Ed., Tokyo: Terra Scientific, 1999.

    Google Scholar 

  2. Bakhmutov, V.G., Sedova, F.I., and Mozgovaya, T.A., Morphologic indicators in the structure of geomagnetic variations during the preparation of the strong earthquake of March 25, 1998 in the Antarctic, Ukr. Antarkt. Zh., 2003, no. 1, pp. 54–60.

  3. Bakun, W.H., Aagaard, B., Dost, B., et al., Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature, 2005, vol. 437, no. 706, pp. 969–974.

    Article  Google Scholar 

  4. Campbell, W.H., Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake, J. Geophys. Res., 2009, vol. 114, no. A5, 307. https://doi.org/10.1029/2008JA013932

    Google Scholar 

  5. Chernogor, L.F., The Earth–atmosphere–ionosphere–magnetosphere as a n open dynamical nonlinear physical system. 1, Nelineinyi Mir, 2006, vol. 4, no. 12, pp. 655–697.

    Google Scholar 

  6. Chernogor, L.F., The Earth–atmosphere–ionosphere–magnetosphere as an open dynamical nonlinear physical system. 2, Nelineinyi Mir, 2007, vol. 5, no. 4, pp. 198–231.

    Google Scholar 

  7. Chernogor, L.F., Fizika i ekologiya katastrof (Physics and Ecology of Catastrophes), Khar’kov: KhNU im. V.N. Karazina, 2012.

  8. Chernogor, L.F., Fizika moshchnogo radioizlucheniya v geokosmose (Physics of Strong Radio Emission in Geospace), Khar’kov: KhNU im. V.N. Karazina, 2014a.

  9. Chernogor, L.F., Geomagnetic field effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2014b, vol. 54, no. 5, pp. 613–624.

  10. Chernogor, L.F., Magnetospheric effects during the approach of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 252–265.

  11. Chernogor, L.F. and Blaunstein, N., Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment, New York: CRC Press, Taylor and Francis Group, 2013.

    Google Scholar 

  12. Current Research in Earth Prediction. Rikitake, T. Ed., Dordrecht: D. Reidel, 1981.

  13. Dunajecka, M. and Pulinets, S.A., Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico, Atmosfera, 2005, vol. 18, no. 4, pp. 233–247.

    Google Scholar 

  14. Earthquakes Prediction Studies: Seismo Electromagnetics, Hayakawa, M., Ed., Tokyo: Terrapub, 2013.

    Google Scholar 

  15. Electromagnetic Phenomena Associated with Earthquakes, Hayakawa, M., Ed., Trivandrum, India: Transworld Research Network, 2009.

    Google Scholar 

  16. Electromagnetic Phenomena Related to Earthquake Prediction, Hayakawa, M. and Fujinawa, Y., Eds., Tokyo: Terra Scientific, 1994.

    Google Scholar 

  17. Fraser-Smith, A.C., Ultra-low-frequency magnetic fields preceding large earthquakes, EOS: Trans. Am. Geophys. Union, 2008, vol. 89, no. 23, p. 211.

    Article  Google Scholar 

  18. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Halliwell, R.A., and Willard, O.G., Jr., low frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 1990, vol. 17, no. 9, pp. 1465–1468.

    Article  Google Scholar 

  19. Fraser-Smith, A.C., McGill, P.R., Helliwell, K.A., and Villard, O.G., Jr., Ultra-low-frequency magnetic field measurements in Southern California during the Northridge earthquake of 17 January 1994, Geophys. Res. Lett., 1994, vol. 21, no. 20, pp. 2195–2198.

    Article  Google Scholar 

  20. Geller, R.J., Earthquake prediction: A critical review, Geophys. J. Int., 1997, vol. 131, pp. 425–450. https://doi.org/10.1111/j.1365-246X.1997.tbo6588.x

    Article  Google Scholar 

  21. Gogatishvili, Ya.M., Geomagnetic precursor of intense earthquakes in the range of geomagnetic pulsations with frequencies of 10.02 Hz, Geomagn. Aeron., 1984, vol. 24, no. 4, pp. 697–700.

    Google Scholar 

  22. Gokhberg, M.B., Morgunov, V.A., and Pokhotelov, O.A., Seismoelektromagnitnye yavleniya (Seismo–Electromagnetic Phenomena), Moscow: Nauka, 1988.

  23. Gossard, E.E. and Hook, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975; Moscow: Mir, 1978.

  24. Gostintsev, Yu.A. and Shatskikh, Yu.V., The mechanism of the generation of longwave acoustic disturbances in the atmosphere by emerging cloud of explosion products, Fiz. Goreniya Vzryva, 1987, no. 2, pp. 91–97.

  25. Guglielmi, A.V., Ultra-low-frequency electromagnetic waves in the Earth’s crust and magnetosphere, Phys.-Usp., 2007, vol. 50, pp. 1197–1216. https://doi.org/10.1070/PU2007v050n12ABEH006413

  26. Hayakawa, M., Kawate, R., Molchanov, O.A., and Jumoto, K., Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993, Geophys. Res. Lett., 1996, vol. 23, no. 3, pp. 241–243.

    Article  Google Scholar 

  27. Jing, F., Shen, X.H., Kang, C.L., and Xiong, P., Variations of multi-parameter observations in atmosphere related to earthquake, Nat. Hazard Earth Syst., 2013, vol. 13, no. 1, pp. 27–33.

    Article  Google Scholar 

  28. Karakelian, D., Klempeter, S.L., Fraser-Smith, A.C., and Thompson, G.A., Ultra-low-frequency electromagnetic measurements associated with the 1998 (Mw = 5.1) San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors, Tectonophysics, 2002, vol. 359, pp. 65–79.

    Article  Google Scholar 

  29. Kopytenko, Yu.A., Matiashvili, T.G., Voronov, P.M., Kopytenko, E.A., and Molchanov, O.A., Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories, Phys. Earth Planet. Int., 1993, vol. 77, pp. 85–95.

    Article  Google Scholar 

  30. Kosterin, N.A., Pilipenko, V.A., and Dmitriev, E.M., On global ULF electromagnetic signals before earthquakes, Geofiz. Issled., 2015, vol. 16, no. 1, pp. 24–34.

    Google Scholar 

  31. Kunitsyn, V.E. and Shalimov, S.L., Ultralow-frequency variations of the magnetic field during the propagation of acoustic-gravity waves in the ionosphere, Moscow Univ. Phys. Bull., 2011, vol. 66, no. 5, pp. 485–488.

    Article  Google Scholar 

  32. Mil’kis, M.R., Meteorological precursors of strong earthquakes, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 3, pp. 36–47.

  33. Molchanov, O.A. and Hayakawa, M., Seismo-Electromagnetics and Related Phenomena: History and Latest Results, Tokyo: Terrapub, 2008.

    Google Scholar 

  34. Molchanov, O.A., Kopytenko, Yu.A., Voronov, P.M., Kopytenko, E.A., Matiashvili, T.G., Fraser-Smith, A.C., and Bernardi, A., Results of magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and the Loma Prieta (Ms = 7.1) earthquakes: Comparative analysis, Geophys. Res. Lett., 1992, vol. 19, pp. 1495–1498.

    Article  Google Scholar 

  35. Moore, G.W., Magnetic disturbances preceding the 1964 Alaska earthquake, Nature, 1964, vol. 203, pp. 508–509.

    Article  Google Scholar 

  36. Morton, B.R., Taylor, G., and Turner, J.S., Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. London, Ser. A, 1956, vol. 234, no. 1196, pp. 1–23.

    Article  Google Scholar 

  37. Park, S.K., Johnson, M., Madden, J.S., Morgan, F.D., and Morrison, H.F., Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms, Rev. Geophys., 1993, vol. 31, pp. 117–132.

    Article  Google Scholar 

  38. Pulinets, S.A., Ouzounov D.P., Karelin, A.V., and Davidenko, D.V., Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 521–538.

  39. Romanova, N.V., Pilipenko, V.A., and Stepanova, M.V., On the magnetic precursor of the Chilean earthquake of February 27, 2010, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 219–222.

  40. Schekotov, A., Fedorov, E., Hobara, Y., and Hayakawa, M., ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake, J. Atmos. Electr., 2013a, vol. 33, no. 1, pp. 41–51.

    Google Scholar 

  41. Schekotov, A., Fedorov, E., Hobara, Y., and Hayakawa, M., ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake, Radiofiz. Electron., 2013b, vol. 4, no. 18, pp. 47–52.

    Google Scholar 

  42. Seismoelectromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling, Hayakawa, M. and Molchanov, O.A., Eds., Tokyo: Terrapub, 2002.

    Google Scholar 

  43. Shestopalov, I.P., Belov, S.V., Soloviev, A.A., and Kuzmin, Yu.D., Neutron generation and geomagnetic disturbances in connection with the Chilean earthquake of February 27, 2010 and a volcanic eruption in Iceland in March–April 2010, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 1, pp. 124–135.

  44. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

  45. Sobisevich, L.E., Kanonidi, K.Kh., and Sobisevich, A.L., Ultra low-frequency electromagnetic disturbances appearing before strong seismic events, Dokl. Earth Sci., 2009, vol. 429, no. 5, pp. 1549–1552.

    Article  Google Scholar 

  46. Sobisevich, L.E., Sobisevich, A.L., and Kanonidi, K.Kh., Anomalous geomagnetic disturbances induced by catastrophic tsunami producing earthquakes in the region of Indonesia, Geofiz. Zh., 2012, vol. 34, no. 5, pp. 22–37.

    Google Scholar 

  47. Sobisevich, L.E., Kanonidi, K.Kh., Sobisevich, A.L., Miseyuk, O.I., Geomagnetic disturbances in the geomagnetic field’s variations at stages of preparation and implementation of the Elazig (March 8, 2010) and M5.3 (January 19, 2011) earthquakes in Turkey, Dokl. Earth Sci., 2013a, vol. 449, no. 1, pp. 324–327.

    Article  Google Scholar 

  48. Sobisevich, A.L., Starostenko, V.I., Sobisevich, L.E., Kendzera, A.V., Shuman, V.N., Vol’fman, Yu.M., Potemka, E.P., Kanonidi, K.Kh., and Garifulin, V.A., The Black Sea earthquakes of late December 2012 and their manifestations in the geomagnetic field, Geofiz. Zh., 2013b, vol. 35, no. 6, pp. 54–70.

    Google Scholar 

  49. Sobisevich, L.E., Sobisevich, A.L., and Kanonidi, K.Kh., Some anomalous geospheric processes during preparation and development of seismic events. Trigger effects in geospheres, in Materialy tret’ego Vserossiiskogo seminara–soveshchaniya (Proceedings of the Third All-Russian Workshop–Meeting), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2015, pp. 284–294.

  50. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestnikov (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  51. Surkov, V.V., Elektromagnitnye effekty pri vzryvakh i zemletryaseniyakh (Electromagnetic Effects at Explosions and Earthquakes), Moscow: MIFI, 2000.

  52. Surkov, V. and Hayakawa, M., Ultra and Extremely Low Frequency Electromagnetic Fields, Tokyo: Springer, 2014.

    Book  Google Scholar 

  53. Surkov, V.V. and Pilipenko, V.A., Magnetic effects due to earthquakes and underground explosions: A review, Ann. Geophys., 1997, vol. 40, no. 2, pp. 227–239.

    Google Scholar 

  54. Vorob’ev, A.A., On the possibility of electric discharges in the Earth’s interiors, Geol. Geofiz., 1970, no. 12, pp. 3–13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron. 59, 374–382 (2019). https://doi.org/10.1134/S001679321903006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321903006X

Navigation