Skip to main content
Log in

Storm Time Ionospheric-Tropospheric Dynamics: a Study Through Ionospheric and Lower Atmospheric Variability Features of High/Mid and Low Latitudes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Geomagnetic storm is one of the major disturbances in Earth’s magnetosphere and its effect on ionosphere is a well studied area, yet there are a few aspects still require attention for possible framing of a reliable comprehensive model associating lower atmospheric variabilities. One of them is the role of storm time coupling mechanisms between high/mid latitudes and equatorial anomaly crest region in modifying ionospheric parameters and their simultaneous effect at the lower altitudes. In this background the paper presents a comparative analysis of the magnetic storm induced effects on the ionosphere for a few events of weak to very strong intensity, covering periods from 2011 to 2015 by utilizing  foF2 data collected at high/mid latitude station of IZMIRAN (55.47° N, 37.30° E, Ф = +50.82°) and mid latitude station Alma-Ata (43.25° N, 76.92° E, Ф = +33.42°) and Total Electron Content (TEC) profiles of Guwahati (26.148° N, 91.73° E, Ф = +12.30°), an equatorial anomaly crest station. The modulation characters in storm time density at the latitudinal zone of study area are presented in association with lower atmospheric variability. In support to the observed variations, the role of storm induced electric field in development process of equatorial anomaly is brought in to ambit of discussion along with possible reason for changes at lower altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abdu, M.A., Major phenomena of the equatorial ionosphere thermosphere system under disturbed conditions, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 13, pp. 1505–1519. doi 10.1016/S1364-6826(96)00152-6

    Article  Google Scholar 

  2. Abdu, M.A., Batista, I.S., Bertoni, F., Reinisch, B.W., Kherani, E.A., and Sobral, J.H.A., Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil, J. Geophys. Res., 2012, vol. 117, A05321. doi 10.1029/2011JA017174

    Article  Google Scholar 

  3. Bagiya, M.S., Iyer, K.N., Joshi, H.P., Thampi, S.V., Tsugawa, T., Ravindran, S., Sridharan, R., and Pathan, B.M., Low-latitude ionospheric–thermospheric response to storm time electrodynamical coupling between high and low latitudes, J. Geophys. Res., 2011, vol. 116, A01303. doi 10.1029/2010JA015845

    Google Scholar 

  4. Basu, S., Basu, Su., Rich, F.J., Groves, K.M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P.R., and Becker-Guedes, F., Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms, J. Geophys. Res., 2007, vol. 112, A08308. doi 10.1029/2006JA012192

    Article  Google Scholar 

  5. Carter, B.A., Yizengaw, E., Pradipta, R., Retterer, J.M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., and Zhang, K., Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm, J. Geophys. Res., 2016, vol. 121, no. 1, pp. 894–905. doi 10.1002/2015JA022194

    Article  Google Scholar 

  6. Danilov, A.D., Reaction of F region to geomagnetic disturbances (review), Geliogeofiz. Issled., 2013, vol. 5, pp. 1–33.

    Google Scholar 

  7. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 3, pp. 209–224.

    Google Scholar 

  8. Depuev, V. and Depueva, A., Some longitudinal features of low latitude ionosphere response to geomagnetic storm of March 29, 1979, Int. J. Electron. Appl. Res., 2016, vol. 3, no. 2, pp. 92−98. http://www.eses.net.in/documents/ paper3.2.2.pdf.

  9. Devi, M., Barman, M.K., and Barbara, A.K., Identification of quiet and disturbed days through IEC profile features over anomaly crest region, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, nos. 12–14, pp. 1413–1423. doi 10.1016/S1364-6826(02)00105-0

    Article  Google Scholar 

  10. Devi, M., Barbara, A.K., Oyama, K.-I., and Chen, C.-H., Earthquake induced dynamics at the ionosphere in presence of magnetic storm, Adv. Space Res., 2013, vol. 53, no. 4, pp. 609–618. doi 10.1016/j.asr.2013.11.054

    Article  Google Scholar 

  11. Dorman, L.I., Space weather and dangerous phenomena on the Earth: Principles of great geomagnetic storms forecasting by online cosmic ray data, Ann. Geophys., 2005, vol. 23, no. 9, pp. 2997–3002. doi 10.5194/ angeo-23-2997-2005

    Article  Google Scholar 

  12. Fejer, B.G. and Scherliess, L., Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 1995, vol. 22, no. 7, pp. 851–854. doi 10.1029/95GL00390

    Article  Google Scholar 

  13. Fejer, B.G., Gonzalez, C.A., Farley, D.T., Kelly, M.C., and Woodman, R.F., Equatorial electric fields during magnetically disturbed conditions, 1. The effect of the interplanetary magnetic field, J. Geophys. Res., 1979, vol. 84, no. 10, pp. 5797–5802. doi 10.1029/ JA084iA10p05797

    Article  Google Scholar 

  14. Foster, J.C. and Rideout, W., Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 2005, vol. 32, L12S04. doi 10.1029/2004GL021719

    Article  Google Scholar 

  15. Foster, J.C. and Rideout, W., Storm enhanced density: Magnetic conjugacy effects, Ann. Geophys., 2007, vol. 25, no. 8, pp. 1791–1799. doi 10.5194/angeo-25-1791-2007

    Article  Google Scholar 

  16. Heelis, R.A., Sojka, J.J., David, M., and Schunk, R.W., Storm time density enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res., 2009, vol. 114, A03315. doi 10.1029/2008JA013690

    Google Scholar 

  17. Huang, C.M., Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times, J. Geophys. Res., 2013, vol. 118, no. 1, pp. 496–501. doi 10.1029/2012JA018118

    Article  Google Scholar 

  18. Huang, C.M., Chen, M.Q., and Liu, J.Y., Ionospheric positive storm phases at the magnetic equator close to sunset, J. Geophys. Res., 2010, vol. 115, A07315. doi 10.1029/2009JA014936

    Google Scholar 

  19. Jin, S., Jin, R., and Kutoglu, H., Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations, J. Geod., 2017, vol. 91, no. 6, pp. 613–626. doi 10.1007/s00190-016-0988-4

    Article  Google Scholar 

  20. Kaye, S.M. and Kivelson, M.G., The influence of geomagnetic activity on the radial variation of the magnetospheric electric field between L = 4 and 10, J. Geophys. Res., 1981, vol. 86, no. 2, pp. 863–867. doi 10.1029/ JA086iA02p00863

    Article  Google Scholar 

  21. Kuai, J., Liu, L., Liu, J., Zhao, B., Chen, Y., Le, H., and Wan, W., The long-duration positive storm effects in the equatorial ionosphere over Jicamarca, J. Geophys. Res., 2015, vol. 120, no. 2, pp. 1311–1324. doi 10.1002/2014JA020552

    Article  Google Scholar 

  22. Lanzerotti, L.J., Cogger, L.L., and Mendillo, M., Latitude dependence of ionosphere total electron content: Observations during sudden commencement storms, J. Geophys Res., 1975, vol. 80, no. 10, pp. 1287–1306. doi 10.1029/JA080i010p01287

    Article  Google Scholar 

  23. Laštovička, J., Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere, J. Atmos. Terr. Phys., 1996, vol. 58, no. 7, pp. 831–843. doi 10.1016/0021-9169(95)00106-9

    Article  Google Scholar 

  24. Lin, C.H., Richmond, A.D., Heelis, R.A., Bailey, G.J., Lu, G., Liu, J.Y., Yeh, H.C., and Su, S.-Y., Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res., 2003, vol. 110, A12312. doi 10.1029/2005JA011304

    Article  Google Scholar 

  25. Lin, C.H., Richmond, A.D., Liu, J.Y., Yeh, H.C., Paxton, L.J., Lu, G., Tsai, H.F., and Su, S.-Y., Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: Observational results, J. Geophys. Res., 2005, vol. 110, A09S28. doi 10.1029/2004JA010900

    Google Scholar 

  26. Lu, G., Richmond, A.D., Roble, R.G., and Emery, B.A., Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study, J. Geophys. Res., 2001, vol. 106, no. 11, pp. 24493–24504. doi 10.1029/2001JA000003

    Article  Google Scholar 

  27. Mannucci, A.J., Tsurutani, B.N., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U., and Scoug, R., Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 2005, vol. 32, L12S02. doi 10.1029/2004GL021467

  28. Mendillo, M. and Narvaez, C., Ionospheric storms at geophysically-equivalent sites, Part 2: Local time storm patterns for sub-auroral ionospheres, Ann. Geophys., 2009, vol. 27, no. 7, pp. 1449–1462. doi 10.5194/angeo-28-1449-2010

    Article  Google Scholar 

  29. Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 1993, vol. 98, no. 4, pp. 5981–5991. doi 10.1029/92JA02777

    Article  Google Scholar 

  30. Prölss, G.W., Ionospheric storms at mid-latitude: A short review; in Midlatitude Ionospheric Dynamics and Disturbances, P.M. Kintner , Eds., Washington, D.C.: AGU, 2008, vol. 181, pp. 9–24. doi 10.1029/181GM03

    Google Scholar 

  31. Pudovkin, M.I. and Raspopov, O.M., The mechanism of action of solar activity on the state of the lower atmosphere and meteorological parameters (a review), Geomagn. Aeron., 1992, vol. 32, no. 5, pp. 593–608.

    Google Scholar 

  32. Stozhkov, Y.I., The role of cosmic rays in the atmospheric processes, J. Phys. G: Nucl. Part. Phys., 2003, vol. 29, no. 5, pp. 913–923. doi 10.1088/0954-3899/29/5/312

    Article  Google Scholar 

  33. Stozhkov, Y.I., Ermakov, V.I., and Makhmutov, V.S., Cosmic rays and atmospheric processes, in Proc. 27th Ray Conf., August 07–15, 2001, Hamburg, 2001, pp. 4157–4160.

  34. Suvorova, A.V., Huang, C.-M., Matsumoto, H., Dmitriev, A.V., Kunitsyn, V.E., Andreeva, E.S., Nesterov, I.A., and Tsai, L.-C., Low-latitude ionospheric effects of energetic electrons during a recurrent magnetic storm, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 9283–9302. doi 10.1002/2014JA020349

    Article  Google Scholar 

  35. Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 2000, vol. 94, nos. 1–2, pp. 231–258. doi 10.1023/A:1026775408875

    Article  Google Scholar 

  36. Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M.A., Sobral, J.H.A., Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B., Fuller-Rowell, T.J., Kozyra, J., Foster, J.C., Coster, A., and Vasyliunas, V.M., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 2004, vol. 109, A08302. doi 10.1029/2003JA010342

    Article  Google Scholar 

  37. Veretenenko, S.V. and Pudovkin, M.I., The galactic cosmic ray Forbush decrease effects on total cloudiness variations, Geomagn. Aeron., 1995, vol. 34, no. 4, pp. 463–468.

    Google Scholar 

  38. Vlasov, M., Kelley, M.C., and Kil, H., Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, nos. 11–13, pp. 1223–1234. doi 10.1016/j.jastp.2003.08.012

    Article  Google Scholar 

  39. Yeh, H.-C., Foster, J.C., Rich, F.J., and Swider, W., Storm time electric field penetration observed at mid-latitude, J. Geophys. Res., 1991, vol. 96, no. 4, pp. 5707–5721. doi 10.1029/90JA02751

    Article  Google Scholar 

  40. Zhao, B., Wan, W., and Liu, L., Responses of equatorial anomaly to the October–November 2003 superstorms, Ann. Geophys., 2005, vol. 23, no. 3, pp. 693–706. doi 10.5194/angeo-23-693-2005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors M. Devi, A.K. Barbara, V. Depuev, A. Depueva, and Yu. Ruzhin acknowledge with thanks the financial support received from the DST, India and RFBR, Russia for partial support received by them through Grant no. 17-55-45094 a_IND. The work of G. Gordiyenko has been supported by the no. 0082/GF4 research grant “Investigate the role of non-stationary geophysical phenomena in the dynamics of the lower and upper atmosphere”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Devi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M., Patgiri, S., Barbara, A.K. et al. Storm Time Ionospheric-Tropospheric Dynamics: a Study Through Ionospheric and Lower Atmospheric Variability Features of High/Mid and Low Latitudes. Geomagn. Aeron. 58, 857–870 (2018). https://doi.org/10.1134/S001679321807006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321807006X

Navigation