Skip to main content
Log in

Features of Geomagnetic Field Secular Variation at the Midlatitude Mikhnevo and Belsk Observatories

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The data from observation of the geomagnetic field variations at the Midlatitude Mikhnevo Geophysical Observatory of Institute of Geosphere Dynamics of the Russian Academy of Sciences, Mikhnevo village, Moscow oblast, Russia (coordinates 54.959° N; 37.766° E) and at the INTERMAGNET international magnetic network station of the Belsk Geophysical Observatory of Geophysical Institute of the Polish Academy of Sciences, Belsk, Poland (coordinates 51.837° N, 20.792° E) in 2008−2016 are analyzed. A long-term trend related to secular variation in the magnetic field of the Earth is studied by the daily-mean values. Annual variation is distinguished in the north horizontal component of the magnetic field. The reliability of the recent version of the International Geomagnetic Reference Field (IGRF-12) model, which was released in December 2014 to describe variations in the main magnetic field at the Mikhnevo and Belsk observatories, is estimated. The 2011 and 2014 jerks are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adam, N.V., Ben’kova, N.P., Orlov, V.P., and Tyurmina, L.O., The westward drift of the geomagnetic field, Geomagn. Aeron., 1964, vol. 4, no. 3, pp. 548–558.

    Google Scholar 

  2. Adushkin, V.V., Zetser, Yu.I., Gavrilov, B.G., Sanina, I.A., and Spivak, A.A., The Mikhnevo observatory measuring system of geophysical fields and geosphere interaction processes, in Dinamicheskie protsessy v sisteme vnutrennikh i vneshnikh vzaimodeistvuyushchikh geosfer. Sb. nauchnykh trudov IDG RAN (Dynamical Processes in the System of Inner and Outer Interacting Geospheres), Moscow: GEOS, 2005, pp. 13–18.

  3. Adushkin, V.V., Ovchinnikov, V.M., Sanina, I.A., and Riznichenko, O.Yu., Mikhnevo: from seismic station no. 1 to a modern geophysical observatory, Izv., Phys. Solid Earth, 2016, no. 1, pp. 105–116.

  4. Aitken, M.J., Harold, M.R., and Weaver, G.H., Some archaeomagnetic evidence concerning the secular variation in Britain, Nature, 1964, vol. 201, pp. 659–660.

    Article  Google Scholar 

  5. Alexandrescu, M., Gibert, D., and Hulot, G., Le Mouël, J.-L., and Saracco, G., Detection of geomagnetic jerks using wavelet analysis, J. Geophys. Res., 1995, vol. 100, pp. 12557–12572.

    Article  Google Scholar 

  6. Alexandrescu, M., Gibert, D., Hulot, G., Le Mouël, J.-L., and Saracco, G., Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 1996, vol. 101, pp. 21975–21994.

    Article  Google Scholar 

  7. Alexandrescu, M., Courtillot, V., and Le Mouël, J.-L., High-resolution secular variation of the geomagnetic field in Western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London, J. Geophys. Res., 1997, vol. 102, pp. 20245–20258.

    Article  Google Scholar 

  8. Alexandrov, T., A method of trend extraction using singular spectrum analysis, Revstat, 2008, vol. 7, no. 1, pp. 1–22.

    Google Scholar 

  9. Alken, P., Maus, S., Chulliat, A., and Manoj, C., NOAA/NGDC candidate models for the 12th generation international geomagnetic reference field, Earth Planets Space, 2015, vol. 67, no. 1, pp. 1–9.

    Article  Google Scholar 

  10. Alldredge, L.R., Geomagnetic variations with periods from 13 to 30 years, J. Geomagn. Geoelectr., 1977, vol. 29, pp. 123–135.

    Article  Google Scholar 

  11. Alldredge, L.R., A discussion of impulses and jerks in the geomagnetic field, J. Geophys. Res., 1984, vol. 89, pp. 4403–4412.

    Article  Google Scholar 

  12. Barraclough, D.R., Observations of the earth’s magnetic field in Edinburgh, from 1670 to the present day, Trans. R. Soc. Edinburgh, 1995, vol. 85, pp. 239–252.

    Article  Google Scholar 

  13. Bilitza, D. and Reinisch, B.W., International reference ionosphere 2007: Improvements and new parameters, Adv. Space Res., 2008, vol. 42, no. 4, pp. 599–609.

    Article  Google Scholar 

  14. Bloxham, J., Dumberry, M., and Zatman, S., The origin of geomagnetic jerks, Nature, 2002, vol. 420, pp. 65–68.

    Article  Google Scholar 

  15. Brown, W.J., Mound, J.E., and Livermore, P.W., Jerks abound: an analysis of geomagnetic observatory data between 1957 and 2008, Phys. Earth Planet. Int., 2013, vol. 223, pp. 62–76.

    Article  Google Scholar 

  16. Bullard, E.C., Freedman, C., Gellman, H., and Nixon, I., The westward drift of the Earth’s magnetic field, Philos. Trans. R. Soc. London, 1950, vol. 243, pp. 67–92.

    Article  Google Scholar 

  17. Burlatskaya, S.P., Nechaeva, T.B., and Petrova, G.N., Estimate for the westward drift of the secular variation of magnetic inclination and changes in the Earth’s magnetic momen according to archaeomagnetic data, Izv. Akad. Nauk SSSR, 1965, no. 6, pp. 31–42.

  18. Cafarella, L., De Santis, A., and Meloni, A., Secular variation in Italy from historical geomagnetic field measurements, Phys. Earth Planet. Int., 1992, vol. 73, pp. 206–221.

    Article  Google Scholar 

  19. Campos-Enríquez, J.O., Hernández-Quintero, E., Nolasco-Chávez, H., Orozco-Torres, A., Cañón-Amaro, C., Álvarez-García, G., and Urrutia-Fucugauchi, J., A preliminary assessment of the IGRF-1995 for Mexico, Phys. Earth Planet. Int., 1994, vol. 82, pp. 105–111.

    Article  Google Scholar 

  20. Chapman, S. and Bartels, J., Geomagnetism, London: Oxford University Press, 1940.

    Google Scholar 

  21. Chulliat, A. and Maus, S., Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010, J. Geophys. Res., 2014, vol. 1, no. 3, pp. 1531–1543.

    Article  Google Scholar 

  22. Chulliat, A., Thébault, E., and Hulot, G., Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks, Geophys. Res. Lett., 2010, vol. 119, no. 3, pp. 1531–1543.

    Article  Google Scholar 

  23. Chulliat, A., Alken, P., and Maus, S., Fast equatorial waves propagating at the top of the Earth’s Core, Geophys. Res. Lett., 2015, vol. 42, no. 19, pp. 3321–3329.

    Article  Google Scholar 

  24. Courtillot, V.E. and Le Mouël, J.-L., Geomagnetic secular variation impulses, Nature, 1984, vol. 311, pp. 709–715.

    Article  Google Scholar 

  25. Courtillot, V.E. and Le Mouël, J.-L., Time variations of the Earth’s magnetic field, Ann. Rev. Earth Planet. Sci., 1988, vol. 16, pp. 389–476.

    Article  Google Scholar 

  26. Courtillot, V., Ducruix, J., and Le Mouël, J.-L., Sur une accélération récente de la variation séculaire du champ magnétique terrestre, C. R. Hebd. Seances Acad. Sci., Série D, 1978, vol. 287, pp. 1095–1098.

    Google Scholar 

  27. Cox, A., Doell, D.R., and Dalrymple, G.B., Geomagnetic polarity epochs and Pleistocene geochronometry, Nature, 1963, vol. 198, pp. 1049–1052.

    Article  Google Scholar 

  28. De Michelis, P., Cafaralla, L., and Meloni, A., A global analysis of the 1991 geomagnetic jerk, Geophys. J. Int., 2000, vol. 143, pp. 545–556.

    Article  Google Scholar 

  29. De Santis, A., Qamili, E., and Wu, L., Toward a possible next geomagnetic transition?, Nat. Hazards Earth Syst. Sci., 2013, vol. 13, pp. 3395–3403.

    Article  Google Scholar 

  30. Ducruix, J., Courtillot, V., and Le Mouël, J.-L., The late 1960s secular variation impulse, the eleven year magnetic variation and the electrical conductivity of the deep mantle, Geophys. J. R. Astron. Soc., 1980, vol. 61, pp. 73–94.

    Article  Google Scholar 

  31. Duka, B., De Santis, A., Mandea, M., Isac, A., and Qamili, E., Geomagnetic jerks characterization via spectral analysis, Solid Earth, 2012, vol. 3, pp. 131–148.

    Article  Google Scholar 

  32. Dumberry, M. and Finlay, C.C., Geomagnetic secular variation and its applications to the core, Earth Planet. Sci. Lett., 2007, vol. 254, no. 1, pp. 146–157.

    Article  Google Scholar 

  33. Dumberry, M. and Bloxham, J., Azimuthal flows in the Earth’s core and changes in length of day at millennial timescales, Geophys. J. Int., 2006, vol. 165, no. 1, pp. 32–46.

    Article  Google Scholar 

  34. D’yachenko, A.I., Magnitnye polyusa Zemli (The Earth’s Magnetic Poles), Moscow: MTsMNO, 2003.

  35. Elsner, J. and Tsonis, A., Singular Spectrum Analysis. A New Tool in Time Series Analysis, New York: Plenum, 1996.

    Book  Google Scholar 

  36. Finlay, C.C., Olsen, N., and Tøffner-Clausen, L., DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model, Earth Planets Space, 2015, vol. 67. https://doi.org/https://doi.org/10.1186/s40623-015-0274-3

  37. Gavoret, J., Gibert, D., and Menvielle, M., and Le Mouël, J.-L., Long-term variations of the external and internal components of the Earth’s magnetic field, J. Geophys. Res., 1986, vol. 91, pp. 4787–4796.

    Article  Google Scholar 

  38. Gellibrand, H., A Discourse Mathematical on the Variation of the Magnetic Needle Together with Its Admirable Diminution Lately Discovered, London: William Jones, 1635.

    Google Scholar 

  39. Genevey, A. and Gallet, Y., Intensity of the geomagnetic field in Western Europe over the past 2000 years: New data from ancient French pottery, J. Geophys. Res., vol. 107. https://doi.org/10.1029/2001JB000701

  40. Gire, C., Le Mouël, J.-L., and Ducruix, J., Evolution of the geomagnetic secular variation field from the beginning of the century, Nature, 1984, vol. 307, pp. 349–352.

    Article  Google Scholar 

  41. Golovkov, V.P. and Kolomiitseva, G.I., Division of geomagnetic field secular variations with respect to the time factor, Geomagn. Aeron., 1970, vol. 10, no. 5, pp. 868–872.

    Google Scholar 

  42. Golovkov, V.P. and Simonyan, A.O., On the first determination of jerks in secular variations in the geomagnetic field, Geomagn. Aeron., 1989, vol. 29, no. 5, pp. 875–875.

    Google Scholar 

  43. Golovkov, V.P. and Simonyan, A.O., On sharp variations in the geomagnetic field in the late 1970s, Geomagn. Aeron., 1991, vol. 31, no. 1, pp. 165–171.

    Google Scholar 

  44. Golovkov, V.P., Simonyan, A.O., and Yakovleva, S.V., Calculating the surface velocity field of the Earth’s core from data on geomagnetic jerks, Geomagn. Aeron., 1996, vol. 36, no. 1, pp. 80–88.

    Google Scholar 

  45. Golovkov, V.P., Yakovleva, S.V., and Simonyan, A.O., Relation between geomagnetic jerks and the Earth’s rotation pole wander, Izv., Phys. Solid Earth, 2003, vol. 39, no. 9, pp. 741–748.

    Google Scholar 

  46. Golyandina, N.E., Metod “Gusenitsa"-SSA: analiz vremennykh ryadov: Uchebnoe posobie (The Caterpillar-SSA Method: Analysis of Time Series: A Textbook), St. Petersburg: SPbGU, 2004.

  47. Gurarii, G.Z., Kudasheva, I.A., Trubikhin, V.M., and Shipunov, S.V., Secular variations in the geomagnetic field in Eastern Georgia 5.5–4.5 million years ago, Geomagn. Aeron., 1994, vol. 34, no. 4, pp. 137–145.

    Google Scholar 

  48. Halley, K., A theory of the variation of the magnetical COMPASS, Philos. Trans. R. Soc. London, 1683, vol. 13, pp. 208–221.

    Article  Google Scholar 

  49. Halley, K., An account of the cause in the variation of the magnetic needle; with an hypothesis of the structure of the earth: as proposed to the Royal Society in one of their late meetings, Philos. Trans. R. Soc. London, 1692, vol. 17, pp. 563–578.

    Article  Google Scholar 

  50. Hide, R., A note on short term core–mantle coupling, geomagnetic secular variations impulses, and potential magnetic field invariants as Lagrangian tracers of core motions, Phys. Earth Planet. Int., 1985, vol. 39, no. 4, pp. 297–300.

    Article  Google Scholar 

  51. IAGA V-MOD Geomagnetic Field Modeling: International Geomagnetic Reference Field. http://www.ngdc.noaa.gov/ IAGA/vmod/igrf.html.

  52. INTERMAGNET (International Real-Time Magnetic Observatory Network). http://www.intermagnet.org.

  53. Jackson, A. and Finlay, C.C., Geomagnetic secular variation and its applications to the core, in Treatise on Geophysics, New York: Elsevier, 2007, vol. 5, pp. 147–193.

    Google Scholar 

  54. Jacobs, J.A., Reversals of the Earth’s Magnetic Field, Cambridge: Cambridge University Press, 1994.

    Book  Google Scholar 

  55. Jankowski, J., Marianiuk, J., Ruta, A., Sucksdorff, C., and Kivinen, M., Long-term stability of a torque-balance variometer with photoelectric converters in observatory practice, Surv. Geophys., 1984, vol. 6, nos. 3–4, pp. 367–380.

    Article  Google Scholar 

  56. Jault, D., Gire, C., and Le Mouël, J.-L., Westward drift, core motions and exchanges of angular momentum between core and mantle, Nature, 1988, vol. 333, no. 6171, pp. 353–356.

    Article  Google Scholar 

  57. Jin, R.S. and Jin, S., The approximately 60-year power spectral peak of the magnetic variations around London and the Earth’s rotation rate fluctuations, J. Geophys. Res., 1989, vol. 94, pp. 13673–13679.

    Article  Google Scholar 

  58. Kalinin, Yu.D., Secular variations and changes in the day length, Meteorol. Gidrol., 1949, no. 3, pp. 15–19.

  59. Kalinin, Yu.D., Vekovye geomagnitnye variatsii (Secular Geomagnetic Variations), Novosibirsk: Nauka, 1984.

  60. Kalugin, V.I., Rotanova, N.M., and Golovkov, V.P., Spatial structure of 60- and 30-year variations in the geomagnetic field according to analytical model data, Geomagn. Aeron., 1984, vol. 24, no. 5, pp. 780–786.

    Google Scholar 

  61. Karaczun, K., Karaczun, M., Bilinska, M., and Uhrynowski, A., Magnetic Map of Poland, 1 : 500 000, Warsaw: Pañstwowy instytut geologiczny, 1978.

  62. Korte, M., Mandea, M., and Matzka, J., A historical declination curve for Munich from different data sources, Phys. Earth Planet. Int., 2009, vol. 174, pp. 161–172.

    Article  Google Scholar 

  63. Kotzé, P.B., The 2007 geomagnetic jerk as observed at the Hermanus Magnetic Observatory, Phys. Comment, 2010, vol. 2, pp. 5–6.

    Google Scholar 

  64. Kotzé, P.B., Signature of the 2007 geomagnetic jerk at the Hermanus Magnetic Observatory, South Africa, Geol. Soc. South Africa, 2011, vol. 114, no. 2, pp. 207–210.

    Article  Google Scholar 

  65. Kotzé, P.B., The 2014 geomagnetic jerk as observed by Southern African magnetic observatories, Earth Planets Space, 2017, vol. 69, no. 17. https://doi.org/10.1186/s40623-017-0605-7

  66. Kotzé, P.B. and Korte, M., Morphology of the Southern African geomagnetic field derived from observatory and repeat station survey observations: 2005–2014, Earth Planets Space, 2016, vol. 68. https://doi.org/10.1186/s40623-016-0403-7

  67. Kraev, A.P., Osnovy geoelektriki (Basics of Geoelectricity), Leningrad: Nedra, 1965.

  68. Kusonskii, O.A., Borodin, P.B., and Bebnev, A.S., Secular variations in the geomagnetic field in the Urals according to observations at Ekaterinburg, Vysokaya Dubrava, and Arti observatories, in Glubinnoe stroenie, geofizika, teplovoe pole Zemli. Interpretatsiya geofizicheskikh polei. Devyatye nauchnye chteniya Bulashevicha. Materialy konferentsii (The Deep Structure, Geophysics, and Heat Field of the Earth: Interpretation of Geophysical Fields. Proceedings of the 9th Bulashevich Scientific Readings Conference), Ekaterinburg, IGF UrO RAN, 2017, pp. 240–244.

  69. Langel, R.A., Kerridge, D.J., Barraclough, D.R., and Malin, S.R., Geomagnetic temporal change: 1903–1982, a spline representation, J. Geomagn. Geoelectr., 1986, vol. 38, pp. 673–697.

    Article  Google Scholar 

  70. Le Mouël, J.-L. and Courtillot, V., Core motions, electromagnetic core–mantle coupling and variations in the Earth’s rotation: New constraints from geomagnetic secular variation impulses, Phys. Earth Planet. Int., 1981, vol. 24, pp. 236–241.

    Article  Google Scholar 

  71. Le Mouël, J.-L., Ducruix, J., and Duyen, C.H., The worldwide character of the 1969–70 impulse of the secular acceleration rate, Phys. Earth Planet. Int., 1982, vol. 28, pp. 337–350.

    Article  Google Scholar 

  72. Macmillan, S., Geomagnetic jerks, in Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D. and Herrero-Bervera, E., Eds., Dordrecht: Springer, 2007, pp. 319–320.

    Google Scholar 

  73. Malin, S.R.C. and Bullard, E., The direction of the Earth’s magnetic field at London, 1570–1975, Philos. Trans. R. Soc. London, 1981, vol. 299, pp. 357–423.

    Article  Google Scholar 

  74. Malin, S.R.C. and Hodder, B.M., Was the 1970 geomagnetic jerk of internal or external origin, Nature, 1982, vol. 296, pp. 726–728.

    Article  Google Scholar 

  75. Malin, S.R.C. and Saunder, I., Rotation of the Earth’s magnetic field, Nature, 1973, vol. 248, pp. 111–126.

    Google Scholar 

  76. Malin, S.R.C., Hodder, B.M., and Barraclough, D.R., Geomagnetic secular variation: A jerk in 1970, Publ. Obs. Ebro, Mem., 1983, vol. 14, pp. 239–256.

    Google Scholar 

  77. Mandea, M. and Olsen, N., Geomagnetic and archeomagnetic jerks: Where do we stand?, EOS, Trans. Am. Geophys. Union, 2009, vol. 90, no. 24, pp. 208–209.

    Article  Google Scholar 

  78. Mandea, M., Bellanger, E., and Le Mouël, J.-L., A geomagnetic jerk for the end of the 20th century?, Earth Planet. Sci. Lett., 2000, vol. 183, pp. 369–373.

    Article  Google Scholar 

  79. Mandea, M., Holme, R., Pais, A., Pinheiro, K., Jackson, A., and Verbanac, G., Geomagnetic jerks: Rapid core field variations and core dynamics, Space Sci. Rev., 2010, vol. 155, pp. 147–175.

    Article  Google Scholar 

  80. Map of anomalies in the magnetic field in the Moscow region. http://www.vsegei.ru/ru/info/gisatlas/.

  81. McLeod, M.G., On the geomagnetic jerk of 1969, J. Geophys. Res., 1985, vol. 90, pp. 4597–4610.

    Article  Google Scholar 

  82. Meyers, H., Minor, Davis, W., A profile of the geomagnetic model user and abuser, J. Geomagn. Geoelectr., 1990, vol. 42, no. 9, pp. 1079–1085.

    Article  Google Scholar 

  83. Mikhnevo Geophysical Observatory, Institute of Geosphere Dynamics, Russian Academy of Sciences. http://www.idg.chph.ras.ru/~mikhnevo/data/.

  84. Nachasova, I.E. and Burakov, K.S., Geomagnetic field strength in the 6th century BC–2nd century AD, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 2, pp. 276–278.

  85. Nurgaliev, D.K., Heller, F., Burov, B.V., Borisov, A.S., Yasonov, P.G., Khasanov, D.I., Ibragimov, Sh.Z., and Yasonov, P.P., Variations in geomagnetic field elements for the last 4000 years based on paleomagnetic studies of the bottom sediments of Lake Aslikul (Southwestern Bashkiria), Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 4, pp. 499–508.

  86. Olsen, N. and Mandea, M., Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk, Earth Planet. Sci. Lett., 2007, vol. 255, pp. 94–105.

    Article  Google Scholar 

  87. Olsen, N. and Mandea, M., Rapidly changing flows in the Earth’s core, Nature Geosci., 2008, vol. 1, pp. 390–394.

    Article  Google Scholar 

  88. Orlov, V.P., Secular variation in the geomagnetic field and its unusually sharp changes, Tr. IZMIRAN, 1961, vol. 18, no. 28, pp. 77–86.

    Google Scholar 

  89. Papitashvili, N.E., Rotanova, N.M., and Pushkov, A.N., 60-year variation in the geomagnetic field in Europe, Geomagn. Aeron., 1980, vol. 20, no. 4, pp. 711–717.

    Google Scholar 

  90. Parkinson, W.D., Introduction to Geomagnetism, Edinburgh: Scottish Academic Press, 1983.

    Google Scholar 

  91. Petecki, Z. and Polechonska, O., A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks, Geol. Q., 2017, vol. 61, no. 4, pp. 934–945.

    Google Scholar 

  92. Petrova, G.N. and Reshetnyak, M.Yu., On the time spectrum of secular variations in geomagnetic field intensity and its sources, Izv., Phys. Solid Earth, 1999, no. 6, pp. 484–491.

  93. Pichon, G., Aubert, J., and Fournier, A., Coupled dynamics of Earth’s geomagnetic westward drift and inner core super-rotation, Earth Planet. Sci. Lett., 2016, pp. 114–126.

  94. Pinheiro, K.J., Jackson, A., and Finlay, C.C., Measurements and uncertainties of the occurrence time of the 1969, 1978, 1991 and 1999 geomagnetic jerks, Geochem., Geophys., Geosyst., 2011, vol. 12, Q10015. https://doi.org/10.1029/2011GC003706

    Article  Google Scholar 

  95. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P., and Gillot, P.Y., The age and duration of the Matuyama–Brunhes transition from new K-Ar data from LaPalma (Canary Islands) and revisited 40Ar/39Ar ages, Earth Planet. Sci. Lett., 2003, vol. 208, pp. 149–163.

    Article  Google Scholar 

  96. Rikitake, T., Electromagnetism and the Earth’s Interior, Amsterdam: Elsevier, 2012.

    Google Scholar 

  97. Rotanova, N.M. and Filippov, S.V., Identification and analysis of the 1969 jerk in secular geomagnetic variations, Geomagn. Aeron., 1987, vol. 27, no. 5, pp. 1001–1005.

    Google Scholar 

  98. Rotanova, N.M., Papitashvili, N.E., Filippov, S.V., and Chernova, T.A., Identification and analysis of 60-year variations in the geomagnetic field according to time series of spherical harmonic coefficients, Geomagn. Aeron., 1983, vol. 23, no. 5, pp. 829–836.

    Google Scholar 

  99. Rotanova, N.M., Bondar’, T.N., and Ivanov, V.V., Temporal changes in secular geomagnetic variations, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 5, pp. 708–720.

  100. Rotanova, N.M., Bondar’, T.N., and Ivanov, V.V., Wavelet analysis of secular geomagnetic variations, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 2, pp. 252–258.

  101. Runcorn, S.K., Geodynamic implications of short time changes in the geomagnetic dynamo, Phys. Earth Planet. Int., 1985, vol. 41, pp. 73–77.

    Article  Google Scholar 

  102. Shalimov, S.L., On the mechanism of geomagnetic jerks, Geofiz. Issled., 2009, vol. 10, no. 1, pp. 38–43.

    Google Scholar 

  103. Simonyan, A.O., Oganyan, M.V., and Khachatryan, A.S., Analysis of variations of external sources according to data of magnetic observations conducted in Armenia, Izv. Nats. Akad. Nauk Resp. Arm., Nauki Zemle, 2011, no. 27, pp. 50–60.

  104. Singer, B.S., Hoffman, K.A., Coe, R.S., Brown, L.L., Jicha, B.R., Pringle, M.S., and Chauvin, A., Structural and temporal requirements for geomagnetic reversal deduced from lava flows, Nature, 2005, vol. 434, pp. 633–636.

    Article  Google Scholar 

  105. Slaucitajis, L. and Winch, D.E., Some morphological aspects of geomagnetic secular variation, Planet. Space Sci., 1965, vol. 13, pp. 1097–1110.

    Article  Google Scholar 

  106. Soare, A., Cucu, G., and Mandea-Alexandrescu, M., Historical geomagnetic measurements in Romania, Ann. Geophys., 1998, vol. 41, pp. 539–554.

    Google Scholar 

  107. Tauxe, L., Herbert, T., Shackleton, N.J., and Kok, Y.S., Astronomical calibration of the Matuyama Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences, Earth Planet. Sci. Lett., 1996, vol. 140, pp. 133–146.

    Article  Google Scholar 

  108. Thébault, E., Finlay, C.C., Beggan, C.D., et al., International Geomagnetic Reference Field: The 12th generation, Earth Planet. Space, 2015, vol. 67, no. 1, pp. 1–195.

    Article  Google Scholar 

  109. Torta, J.M., Pavón-Carrasco, F.J., Marsal, S., and Finlay, C., Evidence for a new geomagnetic jerk in 2014, Geophys. Res. Lett., 2015, vol. 42, no. 19, pp. 7933–7940.

    Article  Google Scholar 

  110. Turner, G.M. and Thompson, R., Lake sediment record of the geomagnetic secular variation Britain during Holocene times, Geophys. J. R. Astron. Soc., 1981, vol. 65, pp. 703–825.

    Article  Google Scholar 

  111. Turner, G.M. and Thompson, R., Detransformation of the British geomagnetic secular variation record for Holocene times, Geophys. J. R. Astron. Soc., 1982, vol. 70, pp. 789–792.

    Article  Google Scholar 

  112. Urrutia-Fucugauchi, J. and Campos-Enríquez, J.O., Geomagnetic secular variation in Central Mexico since 1923 AD and comparison with 1945–1990 IGRF models, J. Geomagn. Geoelectr., 1993, vol. 45, pp. 243–249.

    Article  Google Scholar 

  113. Vautard, R., Yiou, P., and Chil, M., Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Phys. D (Amsterdam), 1992, vol. 58, pp. 95–126.

    Article  Google Scholar 

  114. Vestine, E.H. and Kahle, A.B., The westward drift and geomagnetic secular change, Geophys. J. R. Astron. Soc., 1968, vol. 15, pp. 29–37.

    Article  Google Scholar 

  115. Waddington, R., Gubbins, D., and Barber, N., Geomagnetic field analysis. Part V. Determining steady core–surface flows directly from geomagnetic observations, Geophys. J. Int., 1995, vol. 122, pp. 326–350.

    Article  Google Scholar 

  116. Walker, J.B. and O’Dea, P.L., Geomagnetic secular change impulses, Trans. Am. Geophys. Union, 1952, vol. 33, pp. 797–800.

    Article  Google Scholar 

  117. Wardinski, I., Holme, R., Asari, S., and Mandea, M., The 2003 geomagnetic jerk and its relation to the core surface flows, Earth Planet. Sci. Lett., 2008, vol. 267, pp. 468–481.

    Article  Google Scholar 

  118. Weber, A.M. and Roberts, E.B., The 1950 world isogonic chart, J. Geophys. Res., 1951, vol. 56, pp. 81–84.

    Article  Google Scholar 

  119. Whaler, K.A. and Beggan, C.D., Derivation and use of core surface flows for forecasting secular variation, J. Geophys. Res., 2015, vol. 120, pp. 1400–1414.

    Article  Google Scholar 

  120. Yukutake, T., The westward drift of the magnetic field of the Earth, Bull. Earthquake Res. Inst., Univ. Tokyo, 1962, vol. 40, pp. 1–65.

    Google Scholar 

  121. Yukutake, T., The westward drift of the Earth’s magnetic field in historic times, J. Geomagn. Geoelectr., 1967, vol. 19, pp. 103–116.

    Article  Google Scholar 

  122. Yanovskii, B.M., Zemnoi magnetizm (Terrestrial Magnetism), Leningrad: Leningr. univ., 1964, vol. 1.

  123. Yanovskii, B.M., Zemnoi magnetizm: uchebnoe posobie (Terrestrial Magnetism: A Textbook), Leningrad: Leningr. univ., 1978.

Download references

ACKNOWLEDGMENTS

This work was performed as part of the State assignment (subject АААА-А17-177112350013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Riabova.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riabova, S.A. Features of Geomagnetic Field Secular Variation at the Midlatitude Mikhnevo and Belsk Observatories. Geomagn. Aeron. 59, 115–126 (2019). https://doi.org/10.1134/S0016793218060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218060130

Navigation