Skip to main content
Log in

Heating of Ions by Small-Scale Electric Field Inhomogeneities in the Auroral Ionosphere During Geomagnetic Disturbances

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, measurements of thermal and superthermal ions on the Interball-2 satellite are compared with the results of numerical simulation based on geomagnetic disturbances on December 7, 1996. It is shown that kinetic processes at small scales can have a significant effect on large-scale processes in high latitudes, leading to heating and the formation of ion fluxes and also to the formation of regions with an increased plasma density. Based on the analysis, the mechanisms that should be included in the large-scale ionosphere–magnetosphere models for the adequate description of the ion outflow from the ionosphere to the magnetosphere are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Yau, A.W., Watanabe, S., Yamada, M., and Sagawa, E., Long-term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono/suprathermal ion mass spectrometer observations, J. Geophys. Res., 2004, vol. 109, A09305. doi 10.1029/2003JA010223

    Article  Google Scholar 

  • Amatucci, W.E., Walker, D.N., Ganguli, G., Duncan, D., Antoniades, J.A., Bowles, J.H., Gavrishchaka, V., and Koepke, M.E., Velocity-shear-driven ion-cyclotron waves and associated transverse ion heating, J. Geophys. Res., 1998, vol. 103, pp. 11711–11724. doi 10.1029/98JA00659

    Article  Google Scholar 

  • André, M., Norqvist, P., Andersson, L., Eliasson, L., Eriksson, A.I., Blomberg, L., Erlandson, R., and Waldemark, J., Ion energization mechanisms at 1700 km in the auroral region, J. Geophys. Res., 1998, vol. 103, pp. 4199–4222. doi 10.1029/97JA00855

    Article  Google Scholar 

  • Bekerat, H.A., Schunk, R.W., and Scherliess, L., Estimation of the high-latitude topside electron heat flux using DMSP plasma density measurements, J. Atmos. Solar.-Terr. Phys, 2007, vol. 69, pp. 1029–1048. doi 10.1016/j.jastp.2007.03.015

    Article  Google Scholar 

  • Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., Klimenko, M.V., and Zhang, Y., E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2124–2130. doi 10.1016/j.asr.2014.08.003

    Article  Google Scholar 

  • Cattell, C., Bergmann, R., Sigsbee, K., et al., The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: Fast observations of an auroral zone crossing near midnight, Geophys. Res. Lett., 1998, vol. 25, no. 12, pp. 2053–2056.

    Article  Google Scholar 

  • Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261.

    Article  Google Scholar 

  • Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Features of wave excitation of the electrostatic ion cyclotron type in the auroral ionosphere, Cosmic Res., 2016, vol. 54, no. 1, pp. 52–60.

    Article  Google Scholar 

  • Ergun, R., Carlson, C., McFadden, J., et al., Fast satellite observations of electric field structures in the auroral zone, Geophys. Res. Lett., 1998, vol. 25, pp. 2025–2028.

    Article  Google Scholar 

  • Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL project to study solar–terrestrial physics, Cosmic Res., 1996, vol. 34, no. 4, pp. 313–332.

    Google Scholar 

  • Ganguli, G., Lee, Y.C., and Palmadesso, P.G., A new mechanism for excitation of electrostatic ion cyclotron waves and associated perpendicular ion heating, Geophys. Res. Lett., 1985, vol. 12, no. 10, pp. 643–646.

    Article  Google Scholar 

  • Ganguli, G., Keskinen, M.J., Romero, H., Heelis, R., Moore, T., and Pollock, C., Coupling of microprocesses and macroprocesses due to velocity shear: An application to the low-altitude ionosphere, J. Geophys. Res., 1994, vol. 99, pp. 8873–8889. doi 10.1029/93JA03181

    Article  Google Scholar 

  • Gavrishchaka, V., Koepke, M.E., and Ganguli, G., Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 1996, vol. 3, pp. 3091–3106. doi 10.1063/1.871656

    Article  Google Scholar 

  • Glocer, A., Tóth, G., Gombosi, T., and Welling, D., Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 2009, vol. 114, A05216. doi 10.1029/2009JA014053

    Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Mogilevsky, M.M., and Ilyasov, A.A., Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere, Phys. Plasmas, 2014, vol. 21, 082903. doi 10.1063/1.4891668

  • Gombosi, T.I., Kerr, LK., Nagy, A.F., and Cannata, R.W., Helium in the polar wind, Adv. Space Res., 1991, vol. 12, no. 6, pp. 183–186.

    Article  Google Scholar 

  • Huddleston, M.M., Chappell, C.R., Delcourt, D.C., Moore, T.E., Giles, B.L., and Chandler, M.O., An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere, J. Geophys. Res., 2005, vol. 110, A12202. doi 10.1029/2004JA010401

    Article  Google Scholar 

  • Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, 032906. doi 10.1063/1.4916125

    Google Scholar 

  • Kintner, P.M., Franz, J., Schuck, P., and Klatt, E., Interferometric coherency determination of wavelength or what are broadband ELF waves?, J. Geophys. Res., 2000, vol. 105, pp. 237–250. doi 10.1029/1999JA000323

    Article  Google Scholar 

  • Klimenko, M.V. and Klimenko, V.V., Mechanisms of stratification of the F2 layer and formation of the F3 and G layers in the equatorial ionosphere, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 3, pp. 321–334.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 4, pp. 457–466.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M., Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011, vol. 46, RS0D03. doi 10.1029/2010RS004590

  • Klimenko, M.V., Klimenko, V.V., and Karpachev, A.T., Formation mechanism of additional layers above regular F2 layer in the near-equatorial ionosphere during quiet period, J. Atmos. Sol.-Terr. Phys., 2012, pp. 90–91. doi 10.1016/j.jastp.2012.02.011

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Karpachev, A.T., Ratovsky, K.G., and Stepanov, A.E., Spatial features of Weddell Sea and Yakutsk Anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM TIP model simulation, Adv. Space Res., 2015a, vol. 55, no. 8, pp. 2020–2032. doi 10.1016/j.asr.2014.12.032

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Zakharenkova, I.E., Yasyukevich, Yu.V., Korenkova, N.A., Cherniak, Iu.V., and Mylnikova, A.A., Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum, Adv. Space Res., 2015b, vol. 56, no. 9, pp. 1951–1960. doi 10.1016/j.asr.2015.07-019

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I. A., Stepanov, A.E., Kotova, D.S., Vorobjev V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HFradiowave propagation. I. Ionospheric effect, Geomagn. Aeron. (Engl. Transl.), 2015c, vol. 55, no. 5, pp. 744–762.

    Article  Google Scholar 

  • Koepke, M.E., Carroll, J.J., and Zintl, M.W., Laboratory simulation of broadband ELF waves in the auroral ionosphere, J. Geophys. Res., 1999, vol. 104, pp. 14397–14416.

    Article  Google Scholar 

  • Korenkov, Yu.N., Klimenko, V.V., Forster, M., Bessarab, F.S., and Surotkin, V.A., Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31, 1990, J. Geophys. Res., 1998, vol. 103, no. 7, pp. 14697–14710. doi 10.1029/98JA00210

    Article  Google Scholar 

  • Lukianova, R.Yu. and Christiansen, F., Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents, J. Geophys. Res., 2006, vol. 111, A03213. doi 10.1029/2005JA011465

    Article  Google Scholar 

  • Mogilevsky, M.M., Buabdellakh, A., de la Port, B., Aleksandrova, T.V., Romantsova, T.V., and Lefeuvre, F., Measurements of electromagnetic ULF fields onboard the Auroral Probe satellite: the IESP experiment, Cosmic. Res., 1999, vol. 37, no. 2, pp. 113–120.

    Google Scholar 

  • Moore, T.E., Superthermal ionospheric outflows, Rev. Geophys., 1984, vol. 22, pp. 264–274.

    Article  Google Scholar 

  • Moore, T.E., Chandler, M.O., Pollock, C.J., Reasoner, D.L., Arnoldy, R.L., Austin, B., Kintner, P.M., and Bonnell, J., Plasma heating and flow in an auroral arc, J. Geophys. Res., 1996, vol. 101, no. 3, pp. 5279–5297.

    Article  Google Scholar 

  • Moore, T.E., Fok, M.-C., Delcourt, D.C., Slinker, S.P., and Fedder, J.A., Global aspects of solar wind ionosphere interactions, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 265–278. doi 10.1016/j.jastp.2006.08.009

    Article  Google Scholar 

  • Namgaladze, A.A., Koren’kov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M., Global numerical model of the Earth’s thermosphere, ionosphere, and protonosphere, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.

    Google Scholar 

  • Nosé, M., McEntire, R.W., and Christon, S.P., Change of the plasma sheet ion composition during magnetic storm development observed by the Geotail spacecraft, J. Geophys. Res., 2003, vol. 108, no. A5, 1201. doi 10.1029/2002JA009660

    Google Scholar 

  • Palmadesso, P.J., Coffey, T.P., Ossakow, S.L., and Papadopoulos, K., Topside ionosphere ion heating due to electrostatic ion cyclotron turbulence, Geophys. Res. Lett., 1974, vol. 1, no. 3, pp. 105–108.

    Article  Google Scholar 

  • Pulkkinen, T.I., Ganushkina, N.Yu., Baker, D.N., Turner, N.E., Fennell, J.F., Roeder, J., Fritz, T.A., Grande, M., Kellett, B., and Kettman, G., Ring current ion composition during solar minimum and rising solar activity: Polar/CAMMICE/MICS results, J. Geophys. Res., 2001, vol. 106, pp. 19131–19147.

    Article  Google Scholar 

  • Ridley, A., Gombosi, T., and Dezeeuw, D., Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 2004, vol. 22, pp. 567–584.

    Article  Google Scholar 

  • Sauvaud, J.-A., Barthe, H., Aoustin, C., Thocaven, J.J., Penou, E., Rouzaud, J., Kovrazhkin, R.A., Afanasiev, K.G., and Ivanchenkova, I.Yu., Measurement of the suprathermal plasma by the ION spectrometric complex on the INTERBALL-2 satellite (Auroral Probe), Cosmic. Res., 1998, vol. 36, no. 1, pp. 59–67.

    Google Scholar 

  • Sharp, R.D., Lennartsson, W., and Strangeway, R.J., The ionospheric contribution to the plasma environment in near-Earth space, Radio Sci., 1985, vol. 20, pp. 456–462.

    Article  Google Scholar 

  • Shelley, E., Johnson, R., and Sharp, R., Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 1972, vol. 77, no. 31, pp. 6104–6110.

    Article  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000, vol. 92, pp. 423–533.

    Article  Google Scholar 

  • Suvorova, A.V., Huang, C.-M., Dmitriev, A.V., Kunitsyn, V.E., Andreeva, E.S., Nesterov, I.A., Klimenko, M.V., Klimenko, V.V., and Tumanova, Y.S., Effects of ionizing energetic electrons and plasma transport in the ionosphere during the initial phase of the December 2006 magnetic storm, J. Geophys. Res., 2016, vol. 121, no. 6, pp. 5880–5896. doi 10.1002/2016JA022622

    Article  Google Scholar 

  • Tóth, G., Sokolov, I.V., Gombosi, T.I., et al., Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 2005, vol. 110, A12226. doi 10.1029/2005JA011126

    Article  Google Scholar 

  • Tsunoda, R.T., Livingston, R.C., Vickrey, J.F., Heelis, R.A., Hanson, W.B., Rich, F.J., and Bythrow, P.F., Dayside observations of thermal-ion upwellings at 800-km altitude: An ionospheric signature of the cleft ion fountain, J. Geophys. Res., 1989, vol. 94, no. 11, pp. 15277–15290. doi 10.1029/JA094iA11p15277

    Article  Google Scholar 

  • Vorobjev, V.G. and Yagodkina, O.I., Empirical model of auroral precipitation power during substorms, J. Atmos. Sol.-Ter. Phys., 2008, vol. 70, pp. 654–662.

    Article  Google Scholar 

  • Wiltberger, M., Wang, W., Burns, A., Solomon, S., Lyon, J., and Goodrich, C., Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 1411–1423.

    Article  Google Scholar 

  • Winglee, R.M., Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 6, pp. 527–540.

    Article  Google Scholar 

  • Winglee, R.M., Chua, D., Brittnacher, M., Parks, G., and Lu, G., Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential, J. Geophys. Res., 2002, vol. 107, no. A9, 1237. doi 10.1029/2001JA000214

    Article  Google Scholar 

  • Zhang, Y. and Paxton, L.J., An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1231–1242.

    Article  Google Scholar 

  • Zinin, L.V., Grigoriev, S.A., Chugunin, D.V., Galperin, Yu.I., Lynovsky, V.E, Vasilenko, I.Yu., Latyshev, K.S., and Duboulouz, N., Multi-ion one-dimensional MHD models for the dynamics of the high latitude ionosphere: 2. Ion fountain in the cusp/cleft: comparison of the Tube-7 model with measurements by the HYPERBOLOID mass spectrometer onboard the Interball-2 satellite, Cosmic Res., 2000, vol. 38, no. 1, pp. 3–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Chugunin.

Additional information

Original Russian Text © D.V. Chugunin, M.V. Klimenko, A.A. Chernyshov, V.V. Klimenko, A.A. Il’yasov, R.Yu. Luk’yanova, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 1, pp. 53–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugunin, D.V., Klimenko, M.V., Chernyshov, A.A. et al. Heating of Ions by Small-Scale Electric Field Inhomogeneities in the Auroral Ionosphere During Geomagnetic Disturbances. Geomagn. Aeron. 58, 50–61 (2018). https://doi.org/10.1134/S001679321801005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321801005X

Navigation