Skip to main content
Log in

Role of Biogeochemical Processes during Groundwater Deferrization

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The paper is devoted to the biogeochemical aspects of the treatment of iron-bearing groundwater, which are associated with the formation of biofouling in the pore space around wells after aeration of the aquifer and on technological equipment. Structure and activity characteristics of microbial complexes as a result of pumping groundwater from production and observation wells under changing redox conditions are presented. Scanning electron microscopy was used to study the microstructure and elemental composition of biofilm growths. It has been established that the accumulation of iron and manganese by microbial biomass occurs due to the encrustation of the surface of bacterial cells immersed in a polymer matrix represented by a constant base of three elements: Al, Si, and Ca. The survival of microbial complexes in biofouling is due to the high natural potential and ability to carry out biogeochemical processes in a wide range of oxygen concentrations (aerobic and anaerobic conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. A. Boldyrev, V. V. Kuzmin, N. P. Kuranov, and F. Bilek, “Geochemical modeling of stratal deferrification and demanganation of groundwaters,” Vodosnab. Sanitar. Tekhnika, No. 4, 49–55 (2012).

    Google Scholar 

  2. B. Braun, J. Schröder, H. Knecht, and U. Szewzyk, “Unraveling the microbial community of a cold groundwater catchment system,” Water Res. 107 (15), 113–126 (2016).

    Article  Google Scholar 

  3. T. Das, S. Sehar, L. Koop, Y. K. Wong, and S. Ahmed, “Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation,” Plos One 9 (3), 1–11 (2014).

    Google Scholar 

  4. P. Desmond, K. T. Huisman, H. Sanawar, N. M. Farhat, et al., “Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure,” Water Res. 210, e–118031 (2022). https://doi.org/10.1016/j.watres.2021.118031

    Article  Google Scholar 

  5. H. -C. Flemming and S. Wuertz, “Bacteria and archaea on Earth and their abundance in biofilms,” Nat. Rev. Microbiol. 17 (4), 247–260 (2019).

    Article  Google Scholar 

  6. D. Ghernaout, N. Elboughdiri, and S. Ghareba, “Fenton technology for wastewater treatment: dares and trends,” Open Access Libr. J. 7, 1–28 (2020).

    Google Scholar 

  7. E. M. Golubeva, L. M. Kondrateva, V. S. Komarova, and A. V. Abrazhevich, “Biogeochemical factors of the formation of iron-bearing biominerals,” Litosfera, No. 2, 115–124 (2017).

    Google Scholar 

  8. S. Goode and D. G. Allen, “Effect of calcium on moving-bed biofilm reactor biofilms,” Water Environ. Res. 83 (3), 220–232 (2011).

    Article  Google Scholar 

  9. R. Hallberg and F. G. Ferris, “Biomineralization by Gallionella,” Geomicrobiol. J. 21, 325–330 (2004).

    Article  Google Scholar 

  10. J. Herlitzius, H. Sumpf, and T. Grischek, “German–Russian cooperation for clean drinking water,” Int. J. Water Manag. Bluefacts. 76–81 (2012).

  11. A. Kappler, B. Schink, and D. K. Newman, “Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizing strain BoFeN1,” Geobiology, No. 3, 235–245 (2005).

    Article  Google Scholar 

  12. N. Khatri, S. Tyagi, and D. Rawtani, “Recent strategies for the removal of iron from water: A review,” J. Water Process Eng. 19, 291–304 (2017).

    Article  Google Scholar 

  13. C. R. Kokare, S. Chakraborty, A. N. Khopade, and K. R. Mahadik, “Biofilm: importance and applications,” Ind. J. Biotechnol. 8, 159–168 (2009).

    Google Scholar 

  14. L. M. Kondratyeva, E. M. Golubeva, and Z. N. Litvinenko, “Microbiological factors of the formation of biominerals,” Sibirsk Ekol. Zh., No. 3, 377–389 (2016).

  15. Z. N. Kondratyeva, L.M. Litvinenko, and N. S. Konovalova, “Study of formation and composition in the terrestrial system of water preparation of iron-bearing groundwaters,” Biotekhnologiya 38 (3), 70–81 (2022).

    Google Scholar 

  16. I. Krupińska, “Importance of humic substances for methods of groundwater treatment,” Pol. J. Soil Sci. 48, 161–172 (2015).

    Article  Google Scholar 

  17. I. Krupińska, “Effect of organic substances on the efficiency of Fe(II) to Fe(III) oxidation and removal of iron compounds from groundwater in the sedimentation process,” CEER 26, 15–29 (2017).

    Google Scholar 

  18. I. Krupińska, “Impact of the oxidant type on the efficiency of the oxidation and removal of iron compounds from groundwater containing humic substances,” Molecules 25 (15), 3380 (2020).

    Article  Google Scholar 

  19. M. I. Kucher, E. E. Frenkel, and S. G. Kucher, “Coevolution biosphere as fundamental ecological modern concept,” Aktual. Probl. Gumanitarn. Sotsial.-Ekon. Nauk, No. 5, 64–66 (2011).

    Google Scholar 

  20. V. V. Kulakov and L. M. Kondrateva, “Biogeochemical aspects of purification of groundwaters of the Amur region,” Tikhookean. Geol. 27 (1), 109–118 (2008).

    Google Scholar 

  21. V. V. Kulakov and V. I. Steblevskii, “Introduction in exploitation of alternative underground source of the Khabarovsk water supply,” Vodosnabzh. Sanitar. Tekhn., No. 7, 41–44 (2012).

  22. A. N. Kvartenko and Zh. M. Govorova, “Modernization of technology of complex conditioning of groundwaters,” Vestn. MGSU, No. 5, 118–123 (2013).

    Google Scholar 

  23. J. Li, X. Peng, H Zhou, J. Li, and Sun Z. and, “Molecular evidence for microorganisms participating in Fe, Mn and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge,” J. Geophys. Res. Biogeosci. 118, 665–679 (2013).

    Article  Google Scholar 

  24. G. Liu, Y. Zhang, W. J. Knibbe, C. Feng, W. Liu, G. Medema, and W. van der Meer, “Potential impacts of changing supply-water quality on drinking water distribution: A review,” Water Res. 116, 135–148 (2017).

    Article  Google Scholar 

  25. K. C. Makris, S. S. Andra, and G. Botsaris, “Pipe scales and biofilms in drinking-water distribution systems: undermining finished water quality,” Crit. Rev. Environ. Sci. Technol. 44, 1477–1523 (2014).

    Article  Google Scholar 

  26. R. Munter, P. Overbeck, and J. Sutt, “Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case,” Ozone-Sci. Eng. 30, 73–80 (2008).

    Article  Google Scholar 

  27. S. Paufler, T. Grischek, Y. Adomat, J. Herlitzius, K. Hiller, and Y. Metelica, “Effective range of chlorine transport in an aquifer during disinfection of wells: from laboratory experiments to field application,” J. Hydrology 559, 711–720 (2018).

    Article  Google Scholar 

  28. C. Y. Peng, G. V. Korshin, R. L. Valentine, A. S. Hill, M. J. Friedman, and S. H. Reiner, “Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems,” Water Res. 44 (15), 4570–4580 (2010).

    Article  Google Scholar 

  29. A. Perez, S. Rossano, N. Trcera, D. Huguenot, C. Fourdrin, A. Vernery-Carron, et al., “Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: impact of siderophores,” Geochim. Cosmochim. Acta 188, 147–162 (2016).

    Article  Google Scholar 

  30. B. N. Ryzhenko, S. R. Krainov, and Yu. V. Shvarov, “Physicochemical factors forming the composition of natural waters: verification of the rock–water model,” Geochem. Int. 41 (6), 565–575 (2003).

    Google Scholar 

  31. B. N. Ryzhenko, M. V. Mironenko, and O. A. Limantseva, “Equilibrium and kinetic simulation of groundwater deironing and demanganation,” Geochem. Int. 57 (12), 1306–1319 (2019).

    Article  Google Scholar 

  32. P. S. Stewart, “Diffusion in biofilms,” J. Bacteriol. 185, 1485–1491 (2003).

    Article  Google Scholar 

  33. L. A. Sudek, G. Wanger, A. S. Templeton, H. Staudigel, and B. M. Tebo, “Submarine basaltic glass colonization by the heterotrophic Fe(II)-oxidizing and siderophore-producing deep-sea bacterium Pseudomonas stutzeri VS–10: the potential role of basalt in enhancing growth,” Front. Microbiol. 8, 363 (2017).

    Article  Google Scholar 

  34. Z. M. Summers, J. A. Gralnick, and D. R. Bond, “Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes,” MBio 4, e 420–12 (2013).

  35. V. I. Vernadsky, Biosphere and Noosphere (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  36. Z. Wang L. Liu, J. Yao, and W. Cai, “Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors,” Chemosphere 63 (10), 1728–1735 (2006).

    Article  Google Scholar 

  37. M. Wolska, “Removal of precursors of chlorinated organic compounds in selected water treatment processes,” Desalin. Water Treat. 52, 3938–3946 (2018).

    Article  Google Scholar 

  38. B. Wu, W. Amelung, Y. Xing, R. Bol, and A. E. Berns, “Iron cycling and isotope fractionation in terrestrial ecosystems,” Earth-Sci. Rev. 190, 323–352 (2019).

    Article  Google Scholar 

  39. M. V. Zhurina, A. V. Gannesen, V. K. Plakunov, and E. L. Zdorovenko, “Composition and functions of the extracellular polymer matrix of bacterial biofilms,” Microbiol. 83 (6), 713–722 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to V.V. Ermakov, Zh.M. Govorova, and V.N. Bashkin for valuable recommendations and proposition for the preparation of graphical material.

Funding

This work was made in the framework of the government-financed task of Institute of the Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences no. 121021500060-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Litvinenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

The paper continues a previous issue of the journal devoted to biogeochemistry and the 160th anniversary of its founder Academician V.I. Vernadsky (Geochemistry International, 2023, Vol. 61, No. 10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinenko, Z.N., Kondratyeva, L.M. Role of Biogeochemical Processes during Groundwater Deferrization. Geochem. Int. 61, 1196–1204 (2023). https://doi.org/10.1134/S0016702923100075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923100075

Keywords:

Navigation