Skip to main content
Log in

Organic Compounds of Medium Volatility in the Thermal Fields of Urup Island, Kuriles, and the Kamchatka Peninsula: A Comparative Analysis

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents the first data on the composition of organic compounds of medium volatility in hot springs at Urup Island, Kurile Archipelago. The samples were taken from the Klyuchevoy and Otlivnaya thermal fields, with temperatures from 60 to 85°C and pH from 2.3 to 6.6. Organic compounds were analyzed on a Shimadzu GCMS-QP2010S gas chromatography-mass spectrometer. The thermal waters contain 21 organic compounds, which belong to five homologous series. The most widespread compounds are alkanes (48–52% of the total peak area) and aromatic hydrocarbons (37–38%). The homologous series of isoalkanes, alkenes, and amides were identified in small amounts. Comparison of the data with those provided by earlier similar studies in Kamchatka reveals close similarity in the composition of the dominant organic components in these geothermal regions: the predominance of aliphatic and aromatic hydrocarbons (more than 60%). However, the compounds in the hot waters of Kamchatka springs and wells are much more diverse. For example, the waters also contain carboxylic acids and their esters, terpenes, aldehydes, ketones, and alcohols. In addition to organic components, whose genesis is assessed as biogenic, some geochemical features of the identified compounds (in particular, the molecular mass distribution of the alkanes) indicate that the organic matter (OM) was partly generated by thermogenic processes. The analyzed samples of thermal waters from Urup Island generally yielded the first generalized data on the composition of medium volatility organics in the hydrothermal systems of the Kuril–Kamchatka volcanic arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Yu. Abramov, “Formation of organic chemical composition of carbonated minerali waters of the Essentuki and Nagut deposits,” Razved. Okhr. Nedr, No. 5, 47–51 (2014).

    Google Scholar 

  2. A. Aubrey, H. Cleaves, and J. Bada, “The role of submarine hydrothermal systems in the synthesis of amino acids,” Origins Life Evol. Biosphere 39, 91–108 (2009).

    Article  Google Scholar 

  3. V. L. Barsukov and B. N. Ryzhenko, “Temperature evolution of pore solutions in equilibrium with rocks of various silica contents,” Geol. Ore Deposits 43 (3), 184–201 (2001).

    Google Scholar 

  4. O. K. Bazhenova, O. A. Arefiev, and E. B. Frolov, “Oil of the volcano Uzon caldera, Kamchatka,” Org. Geochem. 29 (1–3), 421–428 (1998).

    Article  Google Scholar 

  5. N. S. Beskrovnyi and B. A. Lebedev, “Oil manifestation in the Uzon caldera,” Dokl. Akad. Nauk SSSR 201 (4), 953–956 (1971).

    Google Scholar 

  6. H. J. Cleaves, A. D. Aubrey, and J. L. Bada, “An evaluation of critical parameters for abiotic peptide synthesis in submarine hydrothermal systems,” Origins Life Evol. Biosphere 39, 109–126 (2009).

    Article  Google Scholar 

  7. K. Daskalopouloua, S. Calabrese, F. Grassa, K. Kyriakopoulos, F. Parello, F. Tassi, and W. D’Alessandro, “Origin of methane and light hydrocarbons in natural fluid emissions: a key study from Greece,” Chem. Geol. 479, 286–301 (2018).

    Article  Google Scholar 

  8. M. L. Di Gioia, A. Leggio, A. Le Pera, A. Liguori, and F. Perri, “Occurrence of organic compounds in the thermal sulphurous waters of Calabria, Italy,” Chromatographia 63, 585–590 (2006).

    Article  Google Scholar 

  9. Yu. S. Drugov and A. A. Rodin, Sample Preparation in the Ecological Analysis (Anatoliya, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  10. J. Fiebig, S. Hofmann, F. Tassi, W. D’Alessandro, O. Vaselli, and A. B. Woodland, “Isotopic patterns of hydrothermal hydrocarbons emitted from Mediterranean volcanoes,” Chem. Geol. 396, 152–163 (2015).

    Article  Google Scholar 

  11. Q. Fu, L. B. Sherwood, J. Horita, G. Lacrampe-Couloume, and W. E. Seyfried, “Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data,” Geochim Cosmochim Acta. 71, 1982–1998 (2007).

    Article  Google Scholar 

  12. Q. Fu, R. A. Socki, and P. B. Niles, “Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes,” Geochim Cosmochim Acta. 154, 1–17 (2015).

    Article  Google Scholar 

  13. E. A. Fursenko, V. A. Kashirtsev, A. E. Kontorovich, and A. N. Fomin, “Naphthides of continental hydrotherms (Uzon, Yellostone, New Zealand): Geochemistry and genesis,” Russ. Geol. Geophys. 55 (5–6), 726–736 (2014).

    Article  Google Scholar 

  14. E. M. Galimov, V. S. Sevast’yanov, A. I. Kamaleeva, O. V. Kuznetsova, I. V. Konopleva, L. N. Vlasova, and G. A. Karpov, “Hydrocarbons from a volcanic area. Oil seeps in the Uzon caldera, Kamchatka,” Geochem. Int. 53 (12), 1019–1027 (2015).

    Article  Google Scholar 

  15. L. A. Garetova, “Hydrocarbon in lagoonal estuaries of the Tatar Strait,” Izv. TINRO 172, 196-207 (2013).

    Google Scholar 

  16. C. Gonzalez-Barreiro, B. Cancho-Grande, P. Araujo-Nespereira, J. A. Cid-Fernandez, and J. Simal-Gandara, “Occurrence of soluble organic compounds in thermal waters by ion trap mass detection,” Chemosphere 75, 34–47 (2009).

    Article  Google Scholar 

  17. G. S. Gorshkov, Volcanism of the Kuril Island Arc (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  18. N. G. Holm and J. L. Charlou, “Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge,” Earth Planet Sci. Lett. 191, 1–8 (2001).

    Article  Google Scholar 

  19. J. M. Hunt, Petroleum Geochemistry and Geology (W.H. Freeman and Company, San Francisco, 1979).

    Google Scholar 

  20. V. A. Isidorov, I. G. Zenkevich, and G. A. Karpov, “Volatile organic compounds in vapor–gas vents of some volcanoes and hydrothermal systems of Kamchatka,” Vulkanol. Seismol., No. 3, 19–25 (1991).

  21. E. G. Kalacheva, Yu. A. Taran, and E. V. Voloshina, “New data on thermal waters of the Kuril islands (Shiashikotan, Keto, Rasshua, and Urup), Groundwater of East Russia, Ed. by D. A. Novikov, S. V. Alekseev, and A. F. Sukhorukova, (IPTs NGU, Novosibirsk, 2018), pp. 238–242 [in Russian].

  22. E. G. Kalacheva and Yu. A. Taran, “Processes controling isotopic composition (δD and δ18O) of thermal waters of the Kuril island arc,” J. Volcanol. Seismol. 13 (4), 3–17 (2019).

    Article  Google Scholar 

  23. M. K. Kalinko, “Genesis of micro-oil occurrences of the Uzon caldera (Eastern Kamchatka),” Transformation of Organic Matter in the Modern and Fossil Sediments and Main Stages in the Generation of Free Hydrocarbons (VNIGNI, Moscow, 1975), pp. 50–58.

    Google Scholar 

  24. Z. Kárpati, Cs. Sajgó, I. Vetó, G. Klopp, and I. Horváth, “Organic matter in thermal waters of the Pannonian Basin—a preliminary report on aromatic compounds,” Org. Geochem. 20, 701–712 (1999).

    Article  Google Scholar 

  25. V. Klevenz, A. Sumoondur, C. Ostertag-Henning, and A. Koschinsky, “Concentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal vents,” Geochem. J. 44, 387–397 (2010).

    Article  Google Scholar 

  26. V. N. Kompanichenko, “Organic matter in hydrothermal systems of Kamchatka: relevance to the origin of life,” Origins Life Evol. Biosphere 39, 338–339 (2009).

    Google Scholar 

  27. V. N. Kompanichenko, “Organic matter in the hydrothermal systems of Kamchatka peninsula and nearby area,” Thermodynamic Inversion (Springer Cham, Switzerland, 2017), pp. 249–271.

    Book  Google Scholar 

  28. V. N. Kompanichenko, V. A. Poturay, and K. V. Shlufman, “Hydrothermal systems of Kamchatka as the model for prebiotic environment,” Origins Life Evol. Biosphere 45(1–2), 93-103 (2015).

    Article  Google Scholar 

  29. V. N. Kompanichenko, V. A. Poturay, and G. A. Karpov, “Organic compounds in thermal water: the Mutnovskii area and the Uzon caldera,” J. Volcanol. Seismol. 10 (5), 305–319 (2016).

    Article  Google Scholar 

  30. C. Konn, J. L. Charlou, N. G. Holm, and O. Mousis, “The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge,” Astrobiology 15 (5), 381–399 (2015).

    Article  Google Scholar 

  31. C. Konn, J. L. Charlou, J. P. Donval, N. G. Holm, F. Dehairs, and S. Bouillon, “Hydrocarbons and oxidised organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents,” Chem. Geol. 258, 299–314 (2009).

    Article  Google Scholar 

  32. C. Konn, D. Testemale, J. Querellou, N. G. Holm, and J. L. Charlou, “New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids,” Geobiology 9 (1), 79–93 (2011).

    Article  Google Scholar 

  33. I. V. Konopleva, L. N. Vlasova, and T. N. Nemchenko, “Genesis of oils in Eastern Kamchatka: evidence from hydrocarbon biomarkers,” Geochem. Int. 56 (7), 735–742 (2018).

    Article  Google Scholar 

  34. A. E. Kontorovich, S. B. Bortnikova, G. A. Karpov, V. A. Kashirtsev, E. A. Kostyreva, and A. N. Fomin, “Uzon volcanic caldera (Kamchatka); a unique natural laboratory of the present-day naphthide genesis,” Russ. Geol. Geophys. 52 (8), 768–772 (2011).

    Article  Google Scholar 

  35. T. I. Kuzyakina, Extended Abstract of Doctoral Dissertation in Biology (Petropavlovsk-Kamchaskii, 2000) [in Russian].

  36. S. Q. Lang, D. A. Butterfield, M. Schulte, D. S. Kelley, and M. D. Lilley Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 74, 941–952 (2010).

    Article  Google Scholar 

  37. A. T. Lebedev, Mass-Spectrometry in Organic Chemistry (Binom, Moscow, 2003) [in Russian].

    Google Scholar 

  38. A. Loison, S. Dubant, P. Adam, and P. Albrecht, “Elucidation of an iterative process of carbon–carbon bond formation of prebiotic significance,” Astrobiology. 10, 973–988 (2010).

    Article  Google Scholar 

  39. M. Marchand, M. Termonia, J. C. Caprais, and M. Wybauw, “Purgue and trap GC–MS analysis of volatile organic compounds from the Guaymas Basin hydrothermal site (Gulf of California),” Analysis 22, 326–331 (1994).

    Google Scholar 

  40. E. K. Markhinin, Volcanoes and Life (Mysl’, Moscow, 1980) [in Russian].

    Google Scholar 

  41. E. K. Markhinin and D. S. Sratula, Hydrothermal Vents of the Kuril Islands (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  42. T. M. McCollom, “Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface,” Rev. Mineral. Geochem. 75, 467-4-94 (2013).

  43. T. M. McCollom, J. S. Seewald, and C. R. German, “Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge,” Geochim Cosmochim Acta 156, 122–144 (2015).

    Article  Google Scholar 

  44. V. N. Melenevskii, V. A. Kashirtsev, G. A. Leonova, V. A. Bobrov, and S. K. Krivonogov, “Transformation of organic matter in the Holocene sediments of lake Ochki (South Baikal region): evidence from pyrolysis data,” Geochem. Int. 53 (10), 903–921 (2015).

    Article  Google Scholar 

  45. P. A. Meyers, “Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes,” Org. Geochem. 34, 261–289 (2003).

    Article  Google Scholar 

  46. L. M. Mukhin, V. B. Bondarev, E. A. Vakin, I. I. Il’yukhina, V. I. Kalinichenko, E. I. Milekhina, and E. N. Safonova, “Aminoacids in the hydrothermal vents of South Kamchatka,” Dokl. Akad. Nauk SSSR 244 (4), 974–977 (1979).

    Google Scholar 

  47. J. J. Nye, E. L. Shock, and H. E. Hartnett, “A novel PARAFAC model for continental hot springs reveals unique dissolved organic carbon compositions,” Org. Geochem. 141, 103964 (2020).

    Article  Google Scholar 

  48. S. B. Ostroukhov, “Genesis of higher petroleum alkyltoluenes,” Petrol. Chem. 58 (1), 8–12 (2018).

    Article  Google Scholar 

  49. A. R. Poshibaeva, Extended Abstract of Candidate’s Dissertation in Chemistry (Ross. Gos. Univ. Nefti Gaza im. I.M. Gubkina, Moscow, 2015) [in Russian].

  50. V. A. Poturay, “Organic matter in the hydrothermal systems of different types and setting, Ozv. TPU. Inzh. Geores. 329 (11), 6–16 (2018).

    Google Scholar 

  51. V. A. Poturay and V. N. Kompanichenko, “Composition and distribution of saturated hydrocarbons in the thermal waters and vapor-water mixture of the Mutnovskii geothermal field and Uzon caldera, Kamchatka,” Geochem. Int. 57(1), 74–82 (2019).

    Article  Google Scholar 

  52. E. P. Reeves, J. M. McDermott, and J. S. Seewald, “The origin of methanethiol in midocean ridge hydrothermal fluids,” Proc Natl Acad Sci USA 111, 5474–5479 (2014).

    Article  Google Scholar 

  53. A. I. Rushdi and B. R. T. Simoneit, “Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions,” Astrobiology 4, 211–224 (2004).

    Article  Google Scholar 

  54. A. I. Rushdi and B. R. T. Simoneit, “Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions,” Origins Life Evol. Biosphere 36, 93–108 (2006).

    Article  Google Scholar 

  55. B. N. Ryzhenko, E. S. Sidkina, and E. V. Cherkasova, “Thermodynamic modeling of water-rock systems to evaluate their generative potential for hydrocarbons,” Geochem. Int. 53 (9), 825–837 (2015).

    Article  Google Scholar 

  56. J. I. Sanchez-Avila, B. E. García-Sanchez, G. M. Vara-Castro, and T. Kretzschmar, “Distribution and origin of organic compounds in the condensates from a Mexican high-temperature geothermal field,” Geothermics 89, 101980 (2021).

    Article  Google Scholar 

  57. G. M. Shpeizer, Yu. K. Vasil’eva, G. M. Ganovicheva, L. M. Mineeva, V. A. Rodionova, I. S. Lomonosov, and W. Yansin, “Organic matter in the mineral waters of orogenic regions of Central Asia,” Geochem. Int. 37 (3), 259–267 (1999).

    Google Scholar 

  58. N. A. Shulga and V. I. Peresypkin, “The genesis of hydrocarbons in hydrothermal deposits of the Lost City and Rainbow Fields (Mid-Atlantic Ridge),” Dokl. Earth Sci. 445 (2), 879–882 (2012).

    Article  Google Scholar 

  59. V. M. Shvets and V. K. Kiryukhin, “Organic matters in mineral therapeutic waters,” Byul. Mosk. O-va Ispyt. Prir. 6, 83–96 (1974).

    Google Scholar 

  60. V. M. Shvets and Yu. B. Seletsky, “Organic matter in the thermal waters of south Africa,” Dokl. Akad. Nauk SSSR 182 (2), 441–444 (1968).

    Google Scholar 

  61. B. R. T. Simoneit, D. W. Deamer, and V. N. Kompanichenko, “Characterization of hydrothermally generated oil from the Uzon caldera, Kamchatka,” Appl. Geochem. 24, 303–309 (2009).

    Article  Google Scholar 

  62. B. R. T. Simoneit, “Prebiotic organic synthesis under hydrothermal conditions: an overview,” Adv. Space Res 33(1), 88–94 (2004).

    Article  Google Scholar 

  63. A. G. Sokol, A. A. Tomilenko, T. A. Bul’bak, and N. V. Sobolev, “Synthesis of hydrocarbons by CO2 fluid conversion with hydrogen: experimental modeling at 7.8 GPa and 1350°C,” Dokl. Earth Sci. 477 (6), 1483–1487 (2017).

    Article  Google Scholar 

  64. R. Soniassy, P. Sandra, and C. Schlett, Water Analysis: Organic Micropollutants (Hewlett-Packard Company, 1994).

    Google Scholar 

  65. V. M. Sonin, T. A. Bul’bak, E. I. Zhimulev, A. A. Tomilenko, A. I. Chepurov, and N. P. Pokhilenko, “Synthesis of heavy hydrocarbons under P–T conditions of the earth’s upper mantle,” Dokl. Earth Sci. 454 (1), 32–36 (2014).

    Article  Google Scholar 

  66. N. O. Sorokhtin, L. I. Lobkovskii, and I. P. Semiletov, “A deep cycle of carbon and formation of abiogenic hydrocarbons,” Izv. TPU. Inzh. Geores. 329 (8), 156–173 (2018).

    Google Scholar 

  67. A. V. Ukraintsev and A. M. Plyusnin, “Aliphatic hydrocarbons of carbonated mineral and A. V. nitrogen thermal waters of Western Transbaikalia,” Geological Evolution of Water–Rock Interaction, Ed. by A. M. Plyusnin (BNTS SO RAS, Ulan-Ude, 2020), pp. 179–183.

    Google Scholar 

  68. S. D. Varfolomeev, G. A. Karpov, G. A. Sinal, S. M. Lomakin, and E. N. Nikolaev, “The youngest natural oil on Earth,” Dokl. Chem. 438, 144–147 (2011).

    Article  Google Scholar 

  69. N. S. Vulfson, V. G. Zaikin, and A. I. Mikaya, Mass-Spectrometry of Organic Compounds (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  70. B. Wang, J. Yang, H. Jiang, G. Zhang, and H. Dong “Chemical composition of n-alkanes and microbially mediated n-alkane degradation potential differ in the sediments of Qinghai-Tibetan lakes with different salinity,” Chem. Geol. 524, 37–48 (2019).

    Article  Google Scholar 

  71. Yu. N. Raznitsin, G. N. Savelieva, and M. A. Fedonkin, “Hydrocarbon potential of paleo- and modern suprasubduction provinces: tectonic, geodynamic, mineralogical-geochemical, and biochemical aspects,” Russ. J. Pac. Geol. 12 (2), 81–92 (2018).

    Article  Google Scholar 

  72. I. G. Zenkevich and Yu. S. Drugov, “Gas chromatographic methods for the determination of trace organic pollutants in environmental samples,” J. Analyt. Chem. 68 (10), 845–861 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.L. Rapoport, a leading engineer at the Center for Monitoring and Predicting Emergency Situations at the Khabarovsk Territory, for help with analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Kompanichenko or V. A. Poturay.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kompanichenko, V.N., Poturay, V.A. Organic Compounds of Medium Volatility in the Thermal Fields of Urup Island, Kuriles, and the Kamchatka Peninsula: A Comparative Analysis. Geochem. Int. 60, 256–265 (2022). https://doi.org/10.1134/S0016702922010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922010074

Keywords:

Navigation