Skip to main content
Log in

Migration Activity of Elements in the Water of Lakes of Northwestern Russia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The distribution and migration of elements in natural waters of northwestern Russia depending on geochemical features of catchment areas and anthropogenic pollution are considered. Waters of small lakes mainly of atmospheric feed reflect atmospheric precipitation of metals on catchment areas. A common feature of the trace element composition of waters in northwestern Russia is the elevated contents of Cu, Ni, Cd, Mo, Sb, Pb, and V, which is related to the geological specific of catchments and smoke emissions of mining and metallurgical enterprises. It was shown that the high concentration of Cd, V, and Ni in the waters of the Kola North lakes are associated with emissions from non-ferrous metallurgical enterprises. In the lake waters of the Republic of Karelia, the anthropogenic enrichment of waters in Cu, Ni, Mn, Zn, Pb, and As is caused by the emissions of MPP Karel’skii Okatysh. In the waters of lakes located in the southwestern part of the Arkhangelsk region, significant water enrichment in Mn, As, V is associated with geochemical features of catchments. The migration activity of elements is determined by geochemical and landscape conditions of catchments, local emissions of mining and metallurgical plants, as well as impact of ore mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. A. Alekin, Principles of Hydrochemistry (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  2. E. I. B. Chopin and B. J. Alloway, “Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Rıotinto and Huelva, Iberian Pyrite Belt, SW Spain,” Water, Air Soil Pollut. 182, 245–261 (2007).

    Article  Google Scholar 

  3. T. F. Ediagbonya, E. E. Nmema, P. Nwachukwu, and O. D. Cand Teniola, “Identification and quantification of heavy metals, anions and coliforms in waterbodies using enrichment factors,” Environ. Anal. Chem. 2, 146 (2015).

    Google Scholar 

  4. A. V. Evseev and T. M. Krasovskaya, Ecological–Geographical Features of Natural Environment of the Russian Far North (SGU, Smolensk, 1996) [in Russian].

    Google Scholar 

  5. M. A. Glazovskaya, Geochemistry of Natural and Anthropogenic Landscapes of the USSR (Vysshaya Shkola, Moscow, 1998) [in Russian].

    Google Scholar 

  6. A. I. Golubev, V. V. Shchptsov, V. P. Mikhailov, and L. V. Glukhanin, “Mineral–raw base of the Republic of Karelia,” Geology of Karelia: from Archean to Present (KNTS RAN, Petrozavodsk, 2011), pp. 123–134 [in Russian].

    Google Scholar 

  7. V. V. Gordeev, A. A. Danilov, A. V. Evseev, et al., Diagnostic Analysis of the Environmental State of the Arctic Zone of the Russian Federation (Extended Abstract). Global Ecological Fund. The UN Evironemntal Program. HPD–Arctica Program (Nauchnyi Mir, Moscow, 2011) [in Russian].

    Google Scholar 

  8. A. Henriksen, I. Kämäri, M. Posh, and A. Wilander, “Critical loads of acidity: Nordic surface waters,” AMBIO 21, 356–363 (1992).

    Google Scholar 

  9. A. Henriksen, B. L. Skjelkvale, T. Moiseenko, et al., “Northern European lake survey 1995: Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales,” AMBIO 27, 80–91 (1998).

    Google Scholar 

  10. ICP–Water Report: Acidification of Surface Water in Europe and North America: Trends, Biological Recovery and Heavy Metals. NIVA–Report Water, (2007).

  11. A. Jinwal, D. Sovita, and S. Malik, “Some trace elements investigation in groundwater of Bhapal and Sehore district in Madhaya Pradesh: India,” J. Appl. Sci. Environ. Manage 13 (4), 47–50 (2009).

    Google Scholar 

  12. N. A. Kashulin, D. B. Denisov, S. S. Sandimirov, V. A. Dauvalter, T. G. Kashulina, D. N. Malinovskii, O. I. Vandysh, B. P. Il’yashuk, and L. P. Kudryavtseva, Antropogenic Modifications of Aquatic Systems of the Khib-ina Mountainous System (Murmansk Region) (KNTS RAN, Apatity, 2008) [in Russian].

    Google Scholar 

  13. T. M. Krasovskaya, A. V. Yevseev, and N. P. Solntzeva, “Environmental hot–spots and impact zones of the Russian Arctic,” (2009). [Electronic resource], URL: http:/www.acops.org.

  14. A. K. Krishna, K. R. Mohan, N. N. Murthy, V. Periasamy, G. Bipinkumar, K. Manohar, and R. S. Srinivas, “Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India,” Environ. Earth Sci. 70, 699–708 (2013).

    Article  Google Scholar 

  15. L. Krzysztof, D. Wiechula, and I. Korns, “Metal contamination of farming soils affected by industry,” Environ. Int. 30, 159–165 (2003).

    Google Scholar 

  16. C. H. Lee, “Assessment of contamination load on water, soil and sediment affected by the Kongjujiel mine drainage, Republic of Korea,” Environ. Geol. 44, 501–515 (2003).

    Article  Google Scholar 

  17. P. H. Masscheleyn, R. D. Delaune, and W. H. Patrick, “Effect of redox potential and pH on arsenic speciation and solubility in contaminated soil,” Environ. Sci. Technol. 25, 1414–1419 (1991).

    Article  Google Scholar 

  18. T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55(10), 841–860 (2017).

    Article  Google Scholar 

  19. T. I. Moiseenko and M. M. Bazova, “Effects of water acidification on element concentrations in natural waters of the Kola North,” Geochem. Int. 54 (1), 112–125 (2016).

    Article  Google Scholar 

  20. T. I. Moiseenko and N. A. Gashkina, Formation of the Chemical Composition of Waters under Conditions of Environmental Changes (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  21. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, and T. A. Kremleva, “Occurrence forms of metals in natural waters depending on water chemistry,” Water Res. 40 (4), 407–416 (2013).

    Article  Google Scholar 

  22. T. I. Moiseenko, B. L. Skjelkvale, N. A. Gashkina, et al., “Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: effects of air pollution and climate change,” Appl. Geochem. 28, 69–79 (2013).

    Article  Google Scholar 

  23. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Water Acidification: Vulnerability and Critical Loads (Lenand, Moscow, 2017) [in Russian].

    Google Scholar 

  24. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, and T. A. Kremleva, “Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia,” Environ. Res. Lett. 14, 1–15 (2019).

    Article  Google Scholar 

  25. T. Moreno, A. Oldroyd, I. Mcdonald, and W. Gibbons, “Preferential fractionation of trace metals–metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain,” Water, Air and Soil Pollut. 179, 93–105 (2007).

    Article  Google Scholar 

  26. G. Morin and G. Calas, “Arsenic in soils, mine tailings, and former industrial sites,” Elements 2(2), 97–101 (2006).

    Article  Google Scholar 

  27. R. Mosello and M. Bianchi, Geiss HAQUACON–MedBas “Acid rain analysis” (1994–1997) (Ispra, 1996).

  28. A. Navarro, D. Collado, M. Carbonell, and J. A. Sa’nchez, “Impact of mining activities on soils in a semi-arid environment: sierra Almagrera district, SE Spain,” Environ. Geochem. Health 26, 383–393 (2004).

    Article  Google Scholar 

  29. T. Navratil and L. Minarik, Earth System History and Natural Variability. Vol. 4. Trace Elements and Contaminants (Eolss Publishers, Oxford, 2005).

  30. A. M. Nikanorov and A. V. Zhulidov, Biomonitoring of Metals in Fresh-Water Ecosystems (Gidrometeoizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  31. A. I. Perelman, Geochemistry (Vysshaya Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  32. V. I. Pozhilenko, B. V. Gavrilenko, D. V. Zhirov, and S. V. Zhabin, Geology of Ore Districts of the Murmansk Region (Kol’sk. Nauchn. Ts. RAN, Apatity, 2002) [in Russian].

    Google Scholar 

  33. C. Reimann and P. de Caritat, Chemical Elements in the Environment—Factsheets for the Geochemist and Environmental Scientist (Springer–Verlag, Berlin–Heidelberg, 1998).

    Google Scholar 

  34. C. Reimann and P. de Caritat, “Intrinsic flaws of element enrichment factors (EF’s) in environmental geochemistry,” Environ. Sci. Technol. 34, 5084–5091 (2000).

    Article  Google Scholar 

  35. Report on the Environmental State and Protection of the Arkhangelsk Region in 2018 (2018) [in Russian].

  36. Resources of the Surface Waters of the USSR, Ed. by T. S. Antonova, Yu. L. Elshin, M. G. Tushinskaya. (Gidrometeoizdat, Leningrad, 1970), Vol. 1 [in Russian].

    Google Scholar 

  37. Russian Arctica: on the Turn of Catastrophe, Ed. by A. V. Yablokov (Ts. Ekol. Politiki, Moscow, 1996) [in Russian].

    Google Scholar 

  38. J. D. Ryan and H. L. Windom, “A geochemical land statistical approach for assessing metal pollution in coastal sediments,” Metals in Coastal Environments of Latin America (Springer, Berlin–Heidelberg, 1988), pp. 47–58.

    Google Scholar 

  39. E. Saur and C. Juste “Enrichment of trace elements from long–range aerosol transport in sandy podozolic soils of southwest France,” Water, Air and Soil Pollut. 73, 235–246 (1994).

    Article  Google Scholar 

  40. V. V. Shchiptsov, “Economic minerals of the Arctic area of the Republic of Karelia,” Razved. Okhr. Nedr 8, 48–53 (2018).

    Google Scholar 

  41. V. V. Shchiptsov and V. I. Ivashchenko, “Mineral-Raw potential of the Arctic areas of the Republic of Karelia,” Tr. KNTs RAN 2, 3–33 (2018).

    Google Scholar 

  42. B. L. Skjelkvåle, J. Stoddard, and T. Andersen, “Trends in surface water acidification in Europe and North America (1989–1998),” Water, Air and Soil Pollut. 130, 787–792 (2001).

    Article  Google Scholar 

  43. P. L. Smedley and D. G. Kinniburgh, “A review of the source, behaviour and distribution of arsenic in natural waters,” Appl. Geochem. 17, 517–568 (2002).

    Article  Google Scholar 

  44. F. Soto-Varela, M. L. RodrIguez-Blanco, M. M. Taboada-Castro, M. T. Taboada-Castro, and J. L. Oropeza–Mota, “Assessment of metal enrichment factors in waters draining a mixed–land–use catchment,” Comm. Soil Sci. Plant Anal. 46, 332–8 (2014).

    Article  Google Scholar 

  45. Standard Methods for the Examination of Water and Wastewater (Amer. Publ. Health Assoc., Washington, 1992).

  46. State Report on the Environmental State and Protection of the Murmansk Region in 2017 (Murmansk, 2018) [in Russian].

  47. State Report on the Environmental State of the Republic of Karelia in 2017 (2018) [in Russian].

  48. L. P. Sulimenko, L. B. Koshkina, T. A. Mingaleva, A. V. Svetlov, D. A. Nekipelov, D. V. Makarov, and V. A. Masloboev, Molybdenum in the Supergene Zone of the Khibina Mountainous Massif (MGTU, Murmansk, 2017) [in Russian].

    Google Scholar 

  49. Y. Sun, Z. Xie, J. Li, Z. Chen, and R. Naidu, “Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure,” Environ. Geochem. Health 28, 73–78 (2006).

    Article  Google Scholar 

  50. R. A. Sutherland, “Bed sediment–associated trace metals in an urban stream, Oahu, Hawaii,” Environ. Geol. 39, 611–627 (2000).

    Article  Google Scholar 

  51. K. K. Turekian and K. H. Wedepohl, “Distribution of elements in some major units or the Earth’s crust,” Bull. Geol. Soc. Amer 72, 175–192 (1961).

    Article  Google Scholar 

  52. A. P. Vinogradov, “Average content of chemical elements in major igneous rocks of the Earth’s crust,” Geokhimiya, No. 7, 565–571 (1962).

    Google Scholar 

  53. S. Wang, C. Zhimin, L. Dongzhao, Z. Zhichang, and Li Guihai, “Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary,” Environ. Geol. 55 (1), 963–97 (2008).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-17-00184.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Bazova or T. I. Moiseenko.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazova, M.M., Moiseenko, T.I. Migration Activity of Elements in the Water of Lakes of Northwestern Russia. Geochem. Int. 59, 970–982 (2021). https://doi.org/10.1134/S0016702921100025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921100025

Keywords:

Navigation