Skip to main content
Log in

SiO2 Inclusions in Sublithospheric Diamonds

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper describes mineralogical characteristics of SiO2 inclusions in sublithospheric diamonds, which typically have complicated growth histories showing alternating episodes of growth, dissolution, and postgrowth deformation and crushing processes. Nitrogen contents in all of the crystals do not exceed 71 ppm, and nitrogen is detected exclusively as B-defects. The carbon isotope composition of the diamonds varies from δ13С = –26.5 to –6.7‰. The SiO2 inclusions occur in association with omphacitic clinopyroxenes, majoritic garnets, CaSiO3, jeffbenite, and ferropericlase. All SiO2 inclusions are coesite, which is often associated with micro-blocks of kyanite in the same inclusions. It was suggested that these phases have been produced by the retrograde dissolution of primary Al-stishovite, which is also evidenced by the significant internal stresses in the inclusions and by deformations around them. The oxygen isotope composition of SiO2 inclusions in sublithospheric diamonds (δ18O up to 12.9‰) indicates a crustal origin of the protoliths. The negative correlation between the δ18O of the SiO2 inclusions and the δ13C of their host diamonds reflects interaction processes between slab-derived melts and reduced mantle rocks at depths greater than 270 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. P. Araujo, J. C. Gaspar, G. P. Bulanova, C. B. Smith, S. C. Kohn, M. J. Walter, and E. H. Hauri, “Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics and carbon isotope composition,” Proceed. X Intern. Kimberlite Conf. Springer, India, 255–269 (2013).

  2. F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, “Carbonates from the lower part of transition zone or even the lower mantle,” Earth Planet. Sci. Lett. 260, 1–9 (2007).

    Article  Google Scholar 

  3. G. P. Brey, V. Bulatov, A. Girnis, J. W. Harris, and T. Stachel, “Ferropericlase—a lower mantle phase in the upper mantle,” Lithos 77, 655–663 (2004).

    Article  Google Scholar 

  4. G. P. Bulanova, M. J. Walter, C. B. Smith, S. C. Kohn, L. S. Armstrong, J. Blundy, and L. Gobbo, “Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism,” Contrib. Mineral. Petrol. 160, 489–510 (2010).

    Article  Google Scholar 

  5. A. Burnham, A. Thomson, G. Bulanova, S. Kohn, C. Smith, and M. Walter, “Stable isotope evidence for crustal recycling as recorded by superdeep diamonds,” Earth Planet. Sci. Lett. 432, 374–380 (2015).

    Article  Google Scholar 

  6. P. Cartigny, J. W. Harris, and M. Javoy, “Diamond genesis, mantle fractionations and mantle nitrogen content: a study of delta C-13-N concentrations in diamonds,” Earth Planet. Sci. Lett. 185, 85–98 (2001).

    Article  Google Scholar 

  7. R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and B. J. Doyle, “Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada,” Lithos 77, 39–55 (2004).

    Article  Google Scholar 

  8. Y. Fukao, S. Widiyantoro, and M. Obayashi, “Stagnant slabs in the upper and lower mantle transition region,” Rev. Geophys. 39, 291–323 (2001).

    Article  Google Scholar 

  9. J. W. Harris, “Diamond geology,” The Properties of Natural and Synthetic Diamond, Ed. by J. E. Field (Academic Press, London, 1992), pp. 345–393.

    Google Scholar 

  10. B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74, 189–215 (2010).

    Article  Google Scholar 

  11. B. Harte, J. Harris, M. Hutchison, G. Watt, and M. Wilding, “Lower mantle mineral associations in diamonds from Sao Luiz, Brazil,” Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R.(Joe) Boyd 6, 125–153 (1999).

    Google Scholar 

  12. P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  13. G. Helffrich, M. Ballmer, and K. Hirose, “Core-exsolved SiO2 dispersal in the Earth’s mantle,” J. Geophys. Res. Solid Earth 123 (1), 176–188 (2018).

    Article  Google Scholar 

  14. R. J. Hemley, “Pressure dependence of Raman spectra of SiO2 polymorphs: quartz, coesite, and stishovite,” High-Pressure Research in Mineral Physics, Ed. by M. H. Manghnani and Y. Syono (Terra Scientific Publishing Co., Tokyo, 1987), pp. 347–359.

    Google Scholar 

  15. K. Hirose, G. Morard, R.Sinmyo, K. Umemoto, J. Hernlund, G.Helffrich, and S. Labrosse, “Crystallization of silicon dioxide and compositional evolution of the Earth’s core,” Nature 543, 99–102 (2017).

    Article  Google Scholar 

  16. M. Hutchison, P. Cartigny, and J. Harris, “Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil. Proceed,” VII Intern. Kimberlite Conf. (Red Roof Design, Cape Town, 1999), Vol. 1, pp. 372–382.

  17. M. Hutchison, M. Hursthouse, and M. Light, “Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity,” Contrib. Mineral. Petrol. 142, 119–126 (2001).

    Article  Google Scholar 

  18. R. B. Ickert, T. Stachel, R. A. Stern, and J. W. Harris, “Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions,” Earth Planet. Sci. Lett. 364, 85–97 (2013).

    Article  Google Scholar 

  19. T. Irifune and A. E. Ringwood, “Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle,” Earth Planet. Sci. Lett. 117, 101–110 (1993).

    Article  Google Scholar 

  20. T. Irifune, A. E. Ringwood, and W. O. Hibberson, “Subduction of continental crust and terrigenous and pelagic sediments: an experimental study,” Earth Planet. Sci. Lett. 126, 351–368 (1994).

    Article  Google Scholar 

  21. D. Jacob, “Nature and origin of eclogite xenoliths from kimberlites,” Lithos 77, 295–316 (2004).

    Article  Google Scholar 

  22. F. Kaminsky, “Mineralogy of the lower mantle: a review of 'super-deep' mineral inclusions in diamond,” Earth Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  23. F. V. Kaminsky, The Earth’s Lower Mantle: Composition and Structure (Springer Geology, 2017).

  24. F. V. Kaminsky, O. D. Zakharchenko, R. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  25. F. Kaminsky, R. Wirth, S. Matsyuk, A. Schreiber, and R. Thomas, “Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas,” Mineral. Mag. 73, 797–816 (2009).

    Article  Google Scholar 

  26. F. V. Kaminsky, I. D. Ryabchikov, and R. Wirth, “A primary natrocarbonatitic association in the deep,” Earth. Mineral. Petrol. 110 (2–3), 387–398 (2016).

    Article  Google Scholar 

  27. M. B. Kirkley, J. J. Gurney, M. L. Otter, S. J. Hill, and L. R. Daniels, “The application of C isotope measurements to the identification of the sources of C in diamonds: a review,” Appl. Geochem. 6, 477–494 (1991).

    Article  Google Scholar 

  28. K. D. Litasov, H. Kagi, A. Shatskiy, E. Ohtani, D. L. Lakshtanov, J. D. Bass, and E. Ito, “High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle,” Earth Planet. Sci. Lett. 262, 620–634 (2007).

    Article  Google Scholar 

  29. Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamentals of the mantle carbonatite concept of diamond genesis,” Geochem. Int. 54 (10), 839–857 (2016).

    Article  Google Scholar 

  30. Yu. A. Litvin, A. V. Spivak, L. S. Dubrovinsky, and D. A. Simonova, “The stishovite paradox in the evolution of lower mantle magmas and diamond-forming melts (experiment at 24 and 26 GPa),” Dokl. Earth Sci 473 (2), 444–448 (2017).

    Article  Google Scholar 

  31. D. Mattey, D. Lowry, and C. Macpherson, “Oxygen isotope composition of mantle peridotite,” Earth Planet. Sci. Lett. 128, 231–241 (1994).

    Article  Google Scholar 

  32. H. O. A. Meyer, “Inclusions in diamond,” Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, Chichester, 1987), pp. 501–522.

    Google Scholar 

  33. A. R. Pawley, P. F. Mcmillan, and J. R. Holloway, “Hydrogen in stishovite, with implications for mantle water-content,” Science 261, 1024–1026 (1993).

    Article  Google Scholar 

  34. I. D. Ryabchikov and L. N. Kogarko, “Deep differentiation of alkali ultramafic magmas: formation of carbonatite melts,” Geochem. Int. 54 (9), 739–747 (2016).

    Article  Google Scholar 

  35. D. J. Schulze, B. Harte, EIMF staff, F. Z. Page, J. W. Valley, D. M. D. R. Channer, and A. L. Jaques, “Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin,” Geology 41, 455–458 (2013).

    Article  Google Scholar 

  36. V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, and V. V. Kalinina, “Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds,” Gondwana Res. 28, 106–120 (2015).

    Article  Google Scholar 

  37. V. S. Shatsky, D. A. Zedgenizov, and A. L. Ragozin, “Evidence for subduction component in the diamond-bearing mantle of the Siberian craton,” Russ. Geol. Geophys. 57 (1), 111–126 (2016).

    Article  Google Scholar 

  38. S. Shilobreeva, I. Martinez, V. Busigny, P. Agrinier, and C. Laverne, “Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D,” Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    Article  Google Scholar 

  39. N. V. Sobolev, Deep Seated Inclusions in Kimberlites and Composition of Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  40. N. V. Sobolev, “Coesite as indicator of ultrahigh pressures in continental lithosphere,” Russ. Geol. Geophys. 47 (1), 94–104 (2006).

    Google Scholar 

  41. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II: lower mantle inclusion parageneses,” Contrib. Mineral. Petrol. 140, 16–27 (2000).

    Article  Google Scholar 

  42. T. Stachel, G. P. Brey, and J. W. Harris, “Inclusions in sublithospheric diamonds: glimpses of deep Earth,” Elements 1 (2), 73–78 (2005).

    Article  Google Scholar 

  43. L. A. Taylor, Z. V. Spetsius, R. Wiesli, M. Spicuzza, and J. W. Valley, “Diamondiferous peridotites from oceanic protoliths: crustal signatures from Yakutian kimberlites,” Russ. Geol. Geophys. 46 (12), 1176–1184 (2005).

    Google Scholar 

  44. A. Thomson, S. Kohn, G. Bulanova, C. Smith, D. Araujo, and M. Walter, “Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions,” Contrib. Mineral. Petrol. 168, 1081 (2014).

    Article  Google Scholar 

  45. A. R. Thomson, M. J. Walter, S. C. Kohn, and R. A. Brooker, “Slab melting as a barrier to deep carbon subduction,” Nature 529, 76–79 (2016).

    Article  Google Scholar 

  46. M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O. T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622–630 (2008).

    Article  Google Scholar 

  47. M. Walter, S. Kohn, D. Araujo, G. Bulanova, C. Smith, E. Gaillou, J. Wang, A. Steele, and S. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011).

    Article  Google Scholar 

  48. A. M. Zaitsev, Optical Properties of Diamond: a Data Handbook (Springer Verlag, Berlin, 2001).

    Book  Google Scholar 

  49. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from São Luiz (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014).

    Article  Google Scholar 

  50. D. V. Zedgenizov, S. Shatsky, A. V. Panin, O. V. Evtushenko, A. L. Ragozin, and H. Kagi, “Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil,” Russ. Geol. Geophys. 56 (1–2), 295–305 (2015).

    Article  Google Scholar 

  51. D. A. Zedgenizov, A. L. Ragozin, V. V. Kalinina and H. Kagi, “The mineralogy of Ca-rich inclusions in sublithospheric diamonds,” Geochem. Int. 54 (10), 890–900 (2016).

    Article  Google Scholar 

  52. D. Zedgenizov, D. Rubatto, V. Shatsky, A. Ragozin, and V. Kalinina, “Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: trace elements and coupled δ13C–δ18O signatures in diamonds and garnet inclusions,” Chem. Geol. 422, 46–59 (2016).

    Article  Google Scholar 

  53. J. Zhang, R. C. Liebermann, T. Gasparik, and C. T. Herzberg, “Melting and subsolidus relations of SiO2 at 9–14 GPa,” J. Geophys. Res. 98, 19785–19793 (1993).

    Article  Google Scholar 

Download references

FUNDING

This study was carried out under government-financed project 0330-2016-0007 and was supported by the Russian Foundation for Basic Research, project no. 17-55-50062, under agreement 14.Y26.31.0018 with the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zedgenizov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedgenizov, D.A., Ragozin, A.L., Kagi, H. et al. SiO2 Inclusions in Sublithospheric Diamonds. Geochem. Int. 57, 964–972 (2019). https://doi.org/10.1134/S0016702919090131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919090131

Keywords:

Navigation