Skip to main content
Log in

High-Temperature Metasomatism of the Layered Mafic–Ultramafic Massif in Kiy Island, Belomorian Mobile Belt

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents results of a detailed petrologic study of metasomatites and their host metagabbroids in the northwestern part of Kiy Island, Onega Bay, White Sea. The first evidence is acquired that coronitization and amphibolization of the host rocks took place at the peak of Svecofennian metamorphism at Т = 700–640°C, Р = 9–10 kbar, and \({a_{{H_2}O}}\) = 0.2–0.3. Accompanying metasomatism has formed a number of long (up to several meters long) melanocratic hornblendite and garnet–amphibole veins 0.3–2 m thick. In this area, metasomatites of another type make up single relatively thin amphibole–zoisite lenses that sometimes host ruby-like corundum. The fluid phase that induced metasomatism was poor in salts (Na,K)Cl, and hence, the rocks do not contain sodic plagioclase, and their amphibole is tschermakite but not pargasite. The compositions of the metasomatites of the two types are proved to be complementary, and this indicates that they were most likely produced by high-temperature metasomatism but not via the removal of components by fluid from migmatization zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cpx :

clinopyroxene

Di :

diopside

Hd :

hedenbergite

Opx :

orthopyroxene

Aug :

augite

Hbl :

amphibole

Grt :

garnet

Prp :

pyrope

Grs :

grossular

Alm :

almandine

Jd :

jadeite

Pl :

plagioclase

An :

anorthite

Ab :

albite

Kfs :

potassic feldspar

Zo :

zoisite

Chl :

chlorite

Ap :

apatite

Ttn :

titanite

Crn :

corundum

Dsp :

diaspore

Ilm :

ilmenite

Mag :

magnetite

Rt :

rutile

Qtz :

quartz

Py :

pyrite

Act :

actinolite

Tr :

tremolite

Ed :

edenite

Rit :

richterite

Eck :

eckermannite

Arf :

arfvedsonite

Ktp :

cataphorite

Gln :

glaucophane

Prg :

pargasite

fPrg :

ferropargasite

Ts :

tschermakite

Rbk :

riebeckite

Mrg :

margarite

Ms :

muscovite. f = FeO/(FeO + MgO) is the Fe mole fraction

References

  • N. L. Alekseev, S. V. Lobach-Zhuchenko, E. S. Bogomolov, L. K. Levsky, N. A. Arestova, G. M. Drugova, Yu. V. Amelin, and V. F. Guseva, “Phase and Nd isotopic equilibria in drusites of Cape Tolstik and the Tupaya Bay area, northwestern Belomorie, Baltic Shield,” Petrology 7 (1), 1–20 (1999).

    Google Scholar 

  • L. Y. Aranovich and R. G. Berman, “Optimized standard state and solution properties of minerals. II. Comparison, predictions, and applications,” Contrib. Mineral. Petrol. 126, 25–37 (1996).

    Article  Google Scholar 

  • L. Ya. Aranovich and R. C. Newton, “H2O activity in concentrated NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  • O. V. Avchenko, S. V. Vysotskiy, and K. V. Chudnenko, “Experience of modeling the garnet + orthopyroxene + spinel + plagioclase reaction by the method of thermodynamic potential minimization,” Dokl. Earth Sci. 415 (1), 773–776 (2007).

    Article  Google Scholar 

  • G. M. Belyaev and V. A. Rudnik, “Types of ferromagnesian–calcic metasomatism inrelation with granite formation with reference to the Aldan Shield, Ferromagnesian Metasomatism and Ore Formation, Ed. by V. A. Rudnik (Nauka, Moscow, 1980), pp. 13–28 [in Russian].

    Google Scholar 

  • R. G. Berman and L. Ya. Aranovich, “Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2,” Contrib. Mineral. Petrol. 126, 1–22 (1996).

    Article  Google Scholar 

  • E. V. Bibikova, S. Claesson, V. A. Glebovitsky, I. S. Sedova, and A. M. Ruch’ev, “Isotope dating of the Svecofennian metamorphism of the Belomorian belt, Baltic Shield,” Geochem. Int. 39 (10), 1023–1026 (2001).

    Google Scholar 

  • E. V. Bibikova, S. V. Bogdanova, V. A. Glebovitsky, S. Claesson, and T. Skiöld, “Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages, Petrology 12 (3), 195–210 (2004).

    Google Scholar 

  • M. N. Bogdanova, M. M. Yefimov, and T. V. Kaulina, “Geochronology of late phases of Early Proterozoic magmatism in the collision suture zone of the White Sea–Laplandian Belt of the Baltic Shield (Kolvitsa Zone),” Dokl. Earth Sci. 350 (5), 1256–1259 (1996).

    Google Scholar 

  • S. V. Budanov and K. I. Shmulovich, “Experimental measurement of diopside solubility in H2O-NaCl fluids at 650oC and 2–7.5 kbar,” Geochem. Int. 30 (2), 237–243 (2000).

    Google Scholar 

  • R. G. N. Cawthorn and K. D. Collerson, “The recalculation of pyroxene end-member parameters the estimation of ferrous and ferric lron content from electron microprobe analyses,” Am. Mineral. 59, 1203–1208 (1974).

    Google Scholar 

  • V. I. Fonarev, A. A. Graphchikov, and A. N. Konilov, “A consistent system of geothermometers for metamorphic complexes.” Int. Geol. Rev. 33 (8), 743–783 (1991).

    Article  Google Scholar 

  • V. I. Fonarev, A. A. Grafchikov, and A. N. Konilov, “Experimental studies of equilibria with minerals of variable composition and geological thermobarometry,” in Experimental Problems of Geology, Ed. by V. A. Zharikov and V. V. Fed’kin (Nauka, Moscow, 1994), pp. 323–355 [in Russian].

    Google Scholar 

  • C. T. Foster, “Mass transfer in sillimanite-bearing pelitic schists near Rangeley, Maine, Am. Mineral. 62, 727–746 (1977).

    Google Scholar 

  • C. M. Graham, and R. A. Powell, garnet-hornblende geothermometer: Calibration, testing, and application to the Pelona Schist, southern California," J. Metamorph. Geol. 2, 13–21 (1984).

    Article  Google Scholar 

  • R. Haas, “Diaspore-corundum equilibrium determined by epitaxis of diaspore on corundum,” Am. Mineral. 57, 1375–1385 (1972).

    Google Scholar 

  • T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol 116, 433–447 (1994).

    Article  Google Scholar 

  • T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Article  Google Scholar 

  • D. M. Kerrick, “Al2SiO5-bearing segregations in the Leopontine Alps, Switzerland: aluminum mobility in metapelites,” Geology 16, 636–640 (1988).

    Article  Google Scholar 

  • L. I. Khodorevskaya, “Mineral composition and PT-conditions of the formation of Ca–Mg–Fe metasomatites in basic granulites (Por’ya Guba, Belomor’e): evidence for syngenetic granitization and basification,” Dokl. Earth Sci. 432, 693–696 (2010).

    Article  Google Scholar 

  • L. I. Khodorevskaya, “Granulite facies metamorphism and metasomatism in the gabbro-anorthosites of the Kolvitsa massif, Kola Peninsula,” Geochem. Int. 2012. 50 (3), 272–288 (2012).

    Article  Google Scholar 

  • L. I. Khodorevskaya and S. P. Korikovsky, “Metasomatic garnet–clinopyroxene–orthopyroxene–hornblende veins in metaanorthosites of the Kolvitsa Massif, Kola Peninsula: mineral composition and relation with syngranulite granitization,” Dokl. Earth Sci. 415, 915–918 (2007).

    Article  Google Scholar 

  • L. I. Khodorevskaya and L. Ya. Aranovich, “Experimental study of amphibole interaction with H2O–NaCl fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer,” Petrology 24 (3), 215–233 (2016).

    Article  Google Scholar 

  • S. P. Korikovsky and L. I. Khodorevskaya, “Granitization of Paleoproterozoic high-pressure metagabbro-norites of the Belomorian Group in Gorelyi island, Kandalaksha Bay area, Baltic Shield,” Petrology 14 (5), 423–451 (2006).

    Article  Google Scholar 

  • S. P. Korikovsky and L. Ya. Aranovich, “Charnockitization and enderbitization of mafic granulites in the Porya Bay area, Lapland Granulite Belt, southern Kola Peninsula: I. Petrology and geothermobarometry,” Petrology 18 (4), 320–349 (2010).

    Article  Google Scholar 

  • D. S. Korzhinskii, “Essay of metasomatic processes,” in Main Problems in Theory of Magmatogenic Ore Deposits (AN SSSR, Moscow, 1955), pp. 355–456 [in Russian].

    Google Scholar 

  • D. S. Korzhinskii, “Granitization as magmatic replacement,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 2, 56–69 (1952).

    Google Scholar 

  • D. P. Krylov, E. B. Sal’nikova, A. M. Fedoseenko, S. Z. Yakovleva, Yu. V. Plotkina, and I. V. Anisimova, “Age and origin of the corundum-bearing rocks of Khitostrov island, Northern Karelia,” Petrology 19 (1), 79–86 (2011).

    Article  Google Scholar 

  • V. S. Kulikov, and V. V. Kulikova, “Geology of the Kiiostrov archipelago of the White Sea,” in Problems of Precambrian Stratigraphy and Magmatism of Karelia, (KNTs RAN, Petrozavodsk, 1990), pp. 3–6.

    Google Scholar 

  • V. S. Kulikov, V. V. Kulikova, V. I. Kevlich, P. I. Kukushkina, and R. A. Troshkova, “Paleoproterozoic Kiiostrov layered intrusion and peculiarity of some metamorphic minerals in it (Onega Bay, White Sea), Proceedings of 14th Geological Congress of the Komi Republic. Geology and Mineral Resources of the European Northeastern Russia (Geoprint,m Syktyvkar, 2004), Vol. 2, pp. 104–106 [in Russian].

    Google Scholar 

  • V. S. Kulikov, V. V. Kulikova, E. V. Sharkov, et al., New geological data on the Kiiostrov layered intrusion (Onega Bay, White Sea), in Belomorian Mobile Belt and its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (A Guidebook and Proceedings of Conference), (KNTs RAN, Petrozavodsk, 2005), pp. 212–216 [in Russian].

    Google Scholar 

  • B. E. Leake, A. R. Woolley, W. D. Birch, et al., “Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623–651 (1997).

    Article  Google Scholar 

  • V. I. Levitsky, Petrology and Geochemistry of Metasomatism during Formation of Continental Crust (Geo, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  • J. McLelland, J. Morrison, B. Selleck, B. Cunningham, C. Olson, and K. Schmitt, “Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granite Gneiss, Adirondack Mountains, New York: origin of quartz-sillimanite segregations, quartz-albite lithologies and associated Kiruna-type low-Ti oxide deposits,” J. Metamorph. Geol. 20, 175–190 (2002).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Solubilities of corundum, wollastonite and quartz in H2O–NaCl solutions at 800°C and 10 kbar: interaction of simple minerals with brines at high pressure and temperature,” Geochim. Cosmochim. Acta 70, 5571–5582 (2006).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Solubility of corundum in the system Al2O3–SiO2–H2O–aCl at 800°C and 10 kbar,” Chem. Geol. 249, 250–261 (2008).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Role of saline fluids in deep crustal and upper mantle metasomatism: insights from experimental studies,” Geofluids 10, 58–72 (2010).

    Google Scholar 

  • L. L. Perchuk and I. V. Lavrent’eva, “Experimental study of mineral equilibria in the system garnet–orthopyroxene–amphibole,” Inter. Geol. Rev. 5, 486–507 (1990).

    Article  Google Scholar 

  • R. Powell, “Regression diagnostics and robust geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revised,” J. Metamorph. Geol. 3, 327–342 (1985).

    Article  Google Scholar 

  • B. M. Ronenson, “Problems of basification and main front in metamorphic complexes, in Geology of Metamorphic Complexes, Ed. by G. A. Keil’man (Sverdlovsk. Gorn. Inst., Sverdlovsk, 1989), pp. 72–85.

    Google Scholar 

  • O. G. Safonov, S. A. Kosova, and D. D. Van Reenen, “Interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl Fluids at 550 MPa and 750 and 800oC: experimental study and applications to dehydration and partial melting in the middle crust,” J. Petrol. 55(12), 2419–2456 (2014).

    Article  Google Scholar 

  • E. B. Salnikova, S. P. Korikovsky, A. B. Kotov, et al., “Age of high-temperature basificate veins in the Lapland granulite belt: results of U-Pb geochronological rutile studies,” in Isotopic Systems and Timing of Geological Processes. Proceedings of 4th Russian Conference, St. Petersburg, Russian, 2009 (IGGD RAN, St. Petersburg, 2009), Vol. 2, pp. 157–158.

    Google Scholar 

  • N. S. Serebryakov and Vs. V. Aristov, “Conditions of localization of collection corundum occurrence in the rocks of the Chupa Sequence, Belomorian Complex, Northern Karelia,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 4, pp. 36–42 (2004).

    Google Scholar 

  • A. I. Slabunov, V. V. Kulikova, V. S. Stepanov, V. S. Kulikov, D. I. Matukov, and V. I. Kevlich, “U-Pb geochronology (SHRIMP-II ion microprobe data) on zircons from the Kiiostrov layred massif of the Belomorian Mobile Belt and correlation of the Paleoproterozoic magmatism of southeastern Fennoscandian Shield, in Isotopic Dating of Ore Formation, Magmatism, Sedimentation, and Metamorphism. Proceedings of 3rd Russian Conference on Isotopic Geochronology (GEOS, Moscow, 2006), Vol. 2, pp. 281–286 [in Russian].

    Google Scholar 

  • N. G. Sudovikov, Ferromagnesium-calcic metasomatism in the Archean of the Aldan Shield and some problems of the “main front”, Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 29–49 (1956).

    Google Scholar 

  • E. N. Terekhov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscoe, 2003) [in Russian].

    Google Scholar 

  • P. Tropper and C. E. Manning, “The solubility of corundum in H2O at high pressure and temperature and its implications for Al mobility in the deep crust and upper mantle,” Chem. Geol. 240, 54–60 (2007).

    Article  Google Scholar 

  • V. I. Ustinov, I. A. Baksheev, and N. S. Serebryakov, “Oxygen isotopic composition of the mineral-forming fluids of corundum-bearing metasomatic rocks at the Khitoostrov and Varaka mineral occurrences, Northern Karelia,” Geochem. Int. 46 (11), 1174–1177 (2008).

    Article  Google Scholar 

  • V. A. Utenkov, High-pressur basificates in the Sysert–Ilmeny Gory gneiss migmatite complex, in Geology of Metamorphic Complexes, Ed. by G. A. Keil’man (Sverdlovsk, 1989), pp. 62–72 [in Russian].

    Google Scholar 

  • S. V. Vysotskiy, A. V. Ignat’ev, V. P. Nechaev, T. A. Velivetskaya, V. V. Yakovenko, and V. I. Levitskii, “Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis,” Geochem. Int. 52(9), 773–782 (2014).

    Article  Google Scholar 

  • N. L. Alekseev, S. V. Lobach-Zhuchenko, E. S. Bogomolov, L. K. Levsky, N. A. Arestova, G. M. Drugova, Yu. V. Amelin, and V. F. Guseva, “Phase and Nd isotopic equilibria in drusites of Cape Tolstik and the Tupaya Bay area, northwestern Belomorie, Baltic Shield,” Petrology 7 (1), 1–20 (1999).

    Google Scholar 

  • L. Y. Aranovich and R. G. Berman, “Optimized standard state and solution properties of minerals. II. Comparison, predictions, and applications,” Contrib. Mineral. Petrol. 126, 25–37 (1996).

    Article  Google Scholar 

  • L. Ya. Aranovich and Newton, R. C. “H2O activity in concentrated NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  • O. V. Avchenko, S. V. Vysotskiy, and K. V. Chudnenko, “Experience of modeling the garnet + orthopyroxene + spinel + plagioclase reaction by the method of thermodynamic potential minimization,” Dokl. Earth Sci. 415 (1), 773–776 (2007).

    Article  Google Scholar 

  • G. M. Belyaev and V. A. Rudnik, “Types of ferromagnesian–calcic metasomatism in relation to granite formation, with reference to the Aldan Shield, Ferromagnesian Metasomatism and Ore Formation, Ed. by V. A. Rudnik (Nauka, Moscow, 1980), pp. 13–28 [in Russian].

    Google Scholar 

  • R. G. Berman and L. Ya. Aranovich, “Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2,” Contrib. Mineral. Petrol. 126, 1–22 (1996).

    Article  Google Scholar 

  • E. V. Bibikova, S. Claesson, V. A. Glebovitsky, I. S. Sedova, and A. M. Ruch’ev, “Isotope dating of the Svecofennian metamorphism of the Belomorian belt, Baltic Shield,” Geochem. Int. 39 (10), 1023–1026 (2001).

    Google Scholar 

  • E. V. Bibikova, S. V. Bogdanova, V. A. Glebovitsky, S. Claesson, and T. Skiöld, “Evolution of the Belomorian Belt: NORDSIM U–Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages, Petrology 12 (3), 195–210 (2004).

    Google Scholar 

  • M. N. Bogdanova, M. M. Yefimov, and T. V. Kaulina, “Geochronology of late phases of Early Proterozoic magmatism in the collision suture zone of the White Sea–Laplandian Belt of the Baltic Shield (Kolvitsa Zone),” Dokl. Earth Sci. 350 (5), 1256–1259 (1996).

    Google Scholar 

  • S. V. Budanov and K. I. Shmulovich, “Experimental measurement of diopside solubility in H2O-NaCl fluids at 650°C and 2–7.5 kbar,” Geochem. Int. 30 (2), 237–243 (2000).

    Google Scholar 

  • R. G. N. Cawthorn and K. D. Collerson, “The recalculation of pyroxene end-member parameters the estimation of ferrous and ferric lron content from electron microprobe analyses,” Am. Mineral. 59, 1203–1208 (1974).

    Google Scholar 

  • V. I. Fonarev, A. A. Graphchikov, and A. N. Konilov, “A consistent system of geothermometers for metamorphic complexes.” Int. Geol. Rev. 33 (8), 743–783 (1991).

    Article  Google Scholar 

  • V. I. Fonarev, A. A. Grafchikov, and A. N. Konilov, “Experimental studies of equilibria with minerals of variable composition and geological thermobarometry,” in Experimental Problems of Geology, Ed. by V. A. Zharikov and V. V. Fed’kin (Nauka, Moscow, 1994), pp. 323–355 [in Russian].

    Google Scholar 

  • C. T. Foster, “Mass transfer in sillimanite-bearing pelitic schists near Rangeley, Maine, Am. Mineral. 62, 727–746 (1977).

    Google Scholar 

  • C. M. Graham, and R. A. Powell, garnet–hornblende geothermometer: Calibration, testing, and application to the Pelona Schist, southern California,” J. Metamorph. Geol. 2, 13–21 (1984).

    Article  Google Scholar 

  • R. Haas, “Diaspore–corundum equilibrium determined by epitaxis of diaspore on corundum,” Am. Mineral. 57, 1375–1385 (1972).

    Google Scholar 

  • T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol 116, 433–447 (1994).

    Article  Google Scholar 

  • T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Article  Google Scholar 

  • D. M. Kerrick, “Al2SiO5-bearing segregations in the Leopontine Alps, Switzerland: aluminum mobility in metapelites,” Geology 16, 636–640 (1988).

    Article  Google Scholar 

  • L. I. Khodorevskaya, “Mineral composition and PT-conditions of the formation of Ca–Mg–Fe metasomatites in basic granulites (Por’ya Guba, Belomor’e): evidence for syngenetic granitization and basification,” Dokl. Earth Sci. 432, 693–696 (2010).

    Article  Google Scholar 

  • L. I. Khodorevskaya, “Granulite facies metamorphism and metasomatism in the gabbro-anorthosites of the Kolvitsa massif, Kola Peninsula,” Geochem. Int. 2012. 50 (3), 272–288 (2012).

    Article  Google Scholar 

  • L. I. Khodorevskaya and S. P. Korikovsky, “Metasomatic garnet–clinopyroxene–orthopyroxene–hornblende veins in metaanorthosites of the Kolvitsa Massif, Kola Peninsula: mineral composition and relation with syngranulite granitization,” Dokl. Earth Sci. 415, 915–918 (2007).

    Article  Google Scholar 

  • L. I. Khodorevskaya and L. Ya. Aranovich, “Experimental study of amphibole interaction with H2O–NaCl fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer,” Petrology 24 (3), 215–233 (2016).

    Article  Google Scholar 

  • S. P. Korikovsky and L. I. Khodorevskaya, “Granitization of Paleoproterozoic high-pressure metagabbro-norites of the Belomorian Group in Gorelyi island, Kandalaksha Bay area, Baltic Shield,” Petrology 14 (5), 423–451 (2006).

    Article  Google Scholar 

  • S. P. Korikovsky and L. Ya. Aranovich, “Charnockitization and enderbitization of mafic granulites in the Porya Bay area, Lapland Granulite Belt, southern Kola Peninsula: I. Petrology and geothermobarometry,” Petrology 18 (4), 320–349 (2010).

    Article  Google Scholar 

  • D. S. Korzhinskii, “Essay of metasomatic processes,” in Main Problems in Theory of Magmatogenic Ore Deposits (AN SSSR, Moscow, 1955), pp. 355–456 [in Russian].

    Google Scholar 

  • D. S. Korzhinskii, “Granitization as magmatic replacement,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 2, 56–69 (1952).

    Google Scholar 

  • D. P. Krylov, E. B. Sal’nikova, A. M. Fedoseenko, S. Z. Yakovleva, Yu. V. Plotkina, and I. V. Anisimova, “Age and origin of the corundum-bearing rocks of Khitostrov island, Northern Karelia,” Petrology 19 (1), 79–86 (2011).

    Article  Google Scholar 

  • V. S. Kulikov, and V. V. Kulikova, “Geology of the Kiiostrov archipelago of the White Sea,” in Problems of Precambrian Stratigraphy and Magmatism of Karelia, (KNTs RAN, Petrozavodsk, 1990), pp. 3–6.

    Google Scholar 

  • V. S. Kulikov, V. V. Kulikova, V. I. Kevlich, P. I. Kukushkina, and R. A. Troshkova, “Paleoproterozoic layered intrusion in Kiy Island, Onega Bay, White Sea, and characteristics of some metamorphic minerals in this intrusion, Proceedings of 14th Geological Congress of the Komi Republic. Geology and Mineral Resources of Northeastern European Russia (Geoprint,m Syktyvkar, 2004), Vol. 2, pp. 104–106 [in Russian].

    Google Scholar 

  • V. S. Kulikov, V. V. Kulikova, E. V. Sharkov, et al., New geological data on the Kiy Island layered intrusion (Onega Bay, White Sea), in Belomorian Mobile Belt and its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (A Guidebook and Proceedings of Conference), (KNTs RAN, Petrozavodsk, 2005), pp. 212–216 [in Russian].

    Google Scholar 

  • B. E. Leake, A. R. Woolley, W. D. Birch, et al., “Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623–651 (1997).

    Article  Google Scholar 

  • V. I. Levitsky, Petrology and Geochemistry of Metasomatism during Continental Crust Growth (Geo, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  • J. McLelland, J. Morrison, B. Selleck, B. Cunningham, C. Olson, and K. Schmitt, “Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granite Gneiss, Adirondack Mountains, New York: origin of quartz-sillimanite segregations, quartz-albite lithologies and associated Kiruna-type low-Ti oxide deposits,” J. Metamorph. Geol. 20, 175–190 (2002).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Solubilities of corundum, wollastonite and quartz in H2O–NaCl solutions at 800°C and 10 kbar: interaction of simple minerals with brines at high pressure and temperature,” Geochim. Cosmochim. Acta 70, 5571–5582 (2006).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Solubility of corundum in the system Al2O3–SiO2–H2O–aCl at 800°C and 10 kbar,” Chem. Geol. 249, 250–261 (2008).

    Article  Google Scholar 

  • R. C. Newton and C. E. Manning, “Role of saline fluids in deep crustal and upper mantle metasomatism: insights from experimental studies,” Geofluids 10, 58–72 (2010).

    Google Scholar 

  • L. L. Perchuk and I. V. Lavrent’eva, “Experimental study of mineral equilibria in the system garnet–orthopyroxene–amphibole,” Inter. Geol. Rev. 5, 486–507 (1990).

    Article  Google Scholar 

  • R. Powell, “Regression diagnostics and robust geothermometer/ geobarometer calibration: the garnet–clinopyroxene geothermometer revised,” J. Metamorph. Geol. 3, 327–342 (1985).

    Article  Google Scholar 

  • B. M. Ronenson, “Problems of basification and main front in metamorphic complexes, in Geology of Metamorphic Complexes, Ed. by G. A. Keil’man (Sverdlovsk. Gorn. Inst., Sverdlovsk, 1989), pp. 72–85.

    Google Scholar 

  • O. G. Safonov, S. A. Kosova, and D. D. Van Reenen, “Interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl Fluids at 550 MPa and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust,” J. Petrol. 55(12), 2419–2456 (2014).

    Article  Google Scholar 

  • E. B. Salnikova, S. P. Korikovsky, A. B. Kotov, et al., “Age of high-temperature basificate veins in the Lapland granulite belt: results of U–Pb geochronological rutile studies,” in Isotopic Systems and Timing of Geological Processes. Proceedings of 4th Russian Conference, St. Petersburg, Russian, 2009 (IGGD RAN, St. Petersburg, 2009), Vol. 2, pp. 157–158.

    Google Scholar 

  • N. S. Serebryakov and Vs. V. Aristov, “Conditions of localization of collection-quality corundum occurrence in the rocks of the Chupa Sequence, Belomorian Complex, Northern Karelia,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 4, pp. 36–42 (2004).

    Google Scholar 

  • A. I. Slabunov, V. V. Kulikova, V. S. Stepanov, V. S. Kulikov, D. I. Matukov, and V. I. Kevlich, “U–Pb geochronology (SHRIMP-II ion microprobe data) on zircons from the Kiy Island layered massif of the Belomorian Mobile Belt and correlation of the Paleoproterozoic magmatism of southeastern Fennoscandian Shield, in Isotopic Dating of Ore Formation, Magmatism, Sedimentation, and Metamorphism. Proceedings of 3rd Russian Conference on Isotopic Geochronology (GEOS, Moscow, 2006), Vol. 2, pp. 281–286 [in Russian].

    Google Scholar 

  • N. G. Sudovikov, Ferromagnesian–calcic metasomatism in the Archean of the Aldan Shield and some problems of the “main front”, Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 29–49 (1956).

    Google Scholar 

  • E. N. Terekhov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2003) [in Russian].

    Google Scholar 

  • P. Tropper and C. E. Manning, “The solubility of corundum in H2O at high pressure and temperature and its implications for Al mobility in the deep crust and upper mantle,” Chem. Geol. 240, 54–60 (2007).

    Article  Google Scholar 

  • V. I. Ustinov, I. A. Baksheev, and N. S. Serebryakov, “Oxygen isotopic composition of the mineral-forming fluids of corundum-bearing metasomatic rocks at the Khitoostrov and Varaka mineral occurrences, Northern Karelia,” Geochem. Int. 46 (11), 1174–1177 (2008).

    Article  Google Scholar 

  • V. A. Utenkov, High-pressure basificates in the Sysert–Ilmeny Gory gneiss migmatite complex, in Geology of Metamorphic Complexes, Ed. by G. A. Keil’man (Sverdlovsk, 1989), pp. 62–72 [in Russian].

    Google Scholar 

  • S. V. Vysotskiy, A. V. Ignat’ev, V. P. Nechaev, T. A. Velivetskaya, V. V. Yakovenko, and V. I. Levitskii, “Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis,” Geochem. Int. 52(9), 773–782 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Khodorevskaya.

Additional information

Original Russian Text © L.I. Khodorevskaya, D.A. Varlamov, 2018, published in Geokhimiya, 2018, No. 6, pp. 541–558.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodorevskaya, L.I., Varlamov, D.A. High-Temperature Metasomatism of the Layered Mafic–Ultramafic Massif in Kiy Island, Belomorian Mobile Belt. Geochem. Int. 56, 535–553 (2018). https://doi.org/10.1134/S001670291806006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291806006X

Keywords

Navigation