Skip to main content
Log in

Quantitative parameters of Pleistocene pelagic sedimentation in the World Ocean: Global trends and regional features

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A comparative analysis of Pleistocene pelagic sedimentation in the Pacific, Indian, and Atlantic oceans revealed the predominance of terrigenous sediments, while carbonate and siliceous sediments are second and third in abundance. During Pleistocene, the mass of terrigenous and siliceous sediments increased, while that of carbonates slightly decreased. The latter is related to the fact that the bottom waters aggressive to carbonates became increasingly generated at high latitudes, thus exceeding an increase in the productivity of plankton carbonate organisms. The peculiarities of accumulation of the main types of bottom sediments in the Pleistocene are considered. It is concluded that the Pleistocene geological history of continents, especially neotectonic uplift and continental glaciations, played an important role in pelagic sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • O. A. Alekin, Ocean Chemistry (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  • A. D. Arkhangel’skii, Conditions of Oil Formation in North Caucasus (Sov. Neft. Promyshlen., Moscow–Leningrad, 1927) [in Russian].

  • J. Backman, K. Moran, D.B. McInroy, L. A. Mayer, and Expedition 302 Scientists, “Arctic coring expedition (ACEX),” Proc. Integr. Ocean Drill. Program 302, (2006), doi 10.2204/iodp.proc.302.2006

  • G. N. Baturin, “Accumulation of carbonaceous and phosphate deposits in the Phanerozoic in relation with volcanic intensity,” in Problems of the Origin and Evolution of the Biosphere, Ed. By E. M. Galimov (URSS, Moscow, 2008), pp. 485–501.

    Google Scholar 

  • N. M. Chumakov, Earth’s Glaciation. History, Stratigraphic Significance, and Role in the Biosphere (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  • C. P. Conrad and C. Lithgow-Bertelloni, “Faster seafloor spreading and lithosphere production during the mid- Cenozoic,” Geology 35(1), 29–32 (2007).

    Article  Google Scholar 

  • L. A. Daragan-Sushchova, O. V. Petrov, N. N. Sobolev, Yu. I. Daragan-Sushchov, L. R. Grin’ko, and N. A. Petrovskaya, “Geology and tectonics of the northeast Russian Arctic Region, based on seismic data,” Geotectonics 49 (6), 469–484 (2015).

    Article  Google Scholar 

  • D. A. Darby, “Arctic perennial ice cover over the last 14 million years,” Paleoceanography 23, PA1S07 (2008). doi 10.1029/2007PA001479

    Article  Google Scholar 

  • D. A. Darby, A. S. Naidu, T. C. Mowatt, and G. A. Jones, “Sediment composition and sedimentary processes in the Arctic Ocean,” in The Arctic Seas: Climatology, Oceanography, Geology, and Biology, Ed. by Y. Herman (VanNostrand Reinhold, New York, 1989), pp. 657–720.

    Chapter  Google Scholar 

  • W. U. Ehrmann, M. J. Hambrey, and J. G. Baldauf, “History of Antarctic glaciation: an Indian Ocean perspective,” AGU, Geophys. Monogr. 70, 423–446 (1990).

    Google Scholar 

  • E. M. Emel’yanov, E. S. Trimonis, and G. S. Kharin, Paleoceanography of the Atlantic Ocean (Moscow–Leningrad, Nedra, 1989) [in Russian].

    Google Scholar 

  • J. T. Eronen, M. Fortelius, A. Micheels, F. T. Portmann, K. Puolamaki, and C. M. Janis, “Neogene aridification of the Northern Hemisphere,” Geology 40, 823–826 (2012).

    Article  Google Scholar 

  • C. Gaina, A. M. Nikishin, and E. I. Petrov, “Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: A link to the Eurekan orogeny?” Arktos, (2016), doi 10.1007/s41063-015-0006-8

    Google Scholar 

  • F. M. Gradstein J. G. Ogg, and A. G. Smith, A Geologic Time Scale 2004, (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  • F. M. Gradstein, J. G. Ogg, M. D. Schmitz, and G. M. Ogg, The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • P. T. Harris, M. Macmillan-Lawler, J. Rupp, and E. K. Baker, “Geomorphology of the oceans,” Marine Geol. 352, 4–24 (2014).

    Article  Google Scholar 

  • F. Herman, J.-D. Champagnac, M. Lupker, and S. D.Willett, “Exhumation rates from orogenic areas,” Abstr. Goldschmidt 2013 Conf. (Florence, 2013), p. 1289.

    Google Scholar 

  • O. Ingolfsson, “Quaternary glacial and climate history of Antarctica,” in Quaternary Glaciations–Extent and Chronology (Ed. by J. Ehlers and P. L.Gibbard (Elsevier, Amsterdam, 2004), pp. 3–43.

    Google Scholar 

  • V. N. Ivanenkov, “General tendencies in the distribution of biogenic elements in the World Ocean,” in Chemistry of Ocean Waters, Ed. by O. K. Bordovskii and V. N. Ivanenkova (Nauka, Moscow, 1979), pp. 188–228.

    Google Scholar 

  • M. Jakobsson, A. Grantz, Y. Kristoffersen, and R. Macnab, “Physiography and bathymetry of the Arctic Ocean,” in The Arctic Ocean Organic Carbon Cycle: Present and Past, Ed. by R. Stein and R. Macdonald (Springer, Berlin, 2004), pp. 1–5.

    Chapter  Google Scholar 

  • W. Jokat, M. Ickrath, and J. O’Connor, “Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasian Basin, Arctic Ocean,” Geophys. Res. Lett. 40, 5047–5051 (2013).

    Article  Google Scholar 

  • J. Knies, R. Mattingsdal, K. Fabian, K. Grsfied, S. Baranwal, K. Husum, S. De Schepper, C. Vogt, N. Andersen, J. Matthiessen, K. Andreassen, W. Jokat, S.-I. Nam, and C. Gaina, “Effect of early Pliocene uplift on the late Pliocene cooling in the Arctic-Atlantic gateway,” Earth Planet. Sci. Lett. 387, 132–144 (2014).

    Article  Google Scholar 

  • A. V. Lapo, Traces of the Past Biospheres (Znanie, Moscow, 1987) [in Russian].

    Google Scholar 

  • Yu. G. Leonov and Yu. A. Volozh, Sedimentary Basins: Technique of Study, Structure, and Evolution (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  • M. A. Levitan, Paleoceanography of the Indian Ocean in the Cretaceous–Neogene (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  • M. A. Levitan, “Terrigenous fluxes in North Atlantic in the Cretaceous–Neogene and factors of the evolution of terrigenous process,” Okeanologiya 34 (3), 433–438 (1994).

    Google Scholar 

  • M. A. Levitan, “Relationships between the major components in present-day and ancient oceanic sedimentary fluxes,” Dokl. Earth Sci. 359 (2), 230–232 (1998).

    Google Scholar 

  • M. A. Levitan, “Sedimentation rates in the Arctic Ocean during the last five marine isotope stages,” Oceanology 55 (3), 425–233 (2015).

    Article  Google Scholar 

  • M. A. Levitan, “Comparative analysis of pelagic Pleistocene silica accumulation in the Pacific and Indian oceans,” Geochem. Int. 54 (3), 257–286 (2016).

    Article  Google Scholar 

  • M. A. Levitan and Yu. A. Bogdanov, “History of biogenic silica accumulation,” in Geological History of the Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980a), pp. 231–252.

    Google Scholar 

  • M. A. Levitan and Yu. A. Bogdanov, “History of carbonate accumulation,” in Geological History of the Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980b), pp. 260–277.

    Google Scholar 

  • M. A. Levitan and T. N. Gel’vi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Atlantic Ocean,” Geochem. Int. 54 (12), 1049–1060 (2016).

    Article  Google Scholar 

  • M. A. Levitan and Yu. A. Lavrushin, Sedimentation History in the Arctic Ocean and Subarctic Seas for the Last 130 Kyr, (Springer, Berlin, 2009).

    Book  Google Scholar 

  • M. A. Levitan, Yu. A. Bogdanov, and A. P. Lisitzin, “Organic carbon in the Upper Cretaceous–Pliocene oceanic deposits,” Dokl. Akad. Nauk SSSR 254 (4), 962–965 (1980).

    Google Scholar 

  • M. A. Levitan, K. V. Syromyatnikov, and T. G. Kuz’mina, “Lithological and Geochemical characteristics of recent and Quaternary sedimentation in the Arctic Ocean,” Geochem. Int. 50 (7), 559–573 (2012).

    Article  Google Scholar 

  • M. A. Levitan, A. N. Balukhovskii, T. A. Antonova, and T.N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Pacific Ocean,” Geochem. Int. 51 (5), 345–352 (2013).

    Article  Google Scholar 

  • M. A. Levitan, T. A. Antonova, and T. N. Gelvi, “Facies structure and quantitative parameters of Pleistocene pelagic sedimentation in the Indian Ocean,” Geochem. Int. 52 (4), 316–324 (2014).

    Article  Google Scholar 

  • L. E. Lisiecki and M. E. Raymo, “A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records,” Paleoceanography 20, (PA1) (2005), PA1003. doi 10.1029/2004PA001071

    Google Scholar 

  • A. P. Lisitzin, Sedimentation in Oceans (Nauka, Moscow, 1974) [in Russian].

  • A. P. Lisitzin, Processes of Oceanic Sedimentation (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  • A. P. Lisitzin, Avalanche sedimentation and Hiatuses in Marine and Oceanic Sedimentation (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  • A. P. Lisitzin, Processes of Terrigenous Sedimentation in Seas and Oceans (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  • A. P. Lisitzin, Yu. A. Bogdanov, M. A. Levitan, S. D. Nikolaev, and E. M. Chekhovskikh, “History of the Mesocenozoic Sedimentation in the World Ocean,” in Geological History of the Ocean, Ed. by A. S. Monin and A. P. Lisitzin, (Nauka, Moscow, 1980), pp. 406–427 [in Russian].

    Google Scholar 

  • X. Liu, R. Rendle-Bühring, and R. Henrich, “Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene,” Quatern. Sci. Rev. 133, 15–27 (2016).

    Article  Google Scholar 

  • G. V. Lopatin, “Erosion and sink of alluvium,” Priroda, No. 7, pp. 18–25 (1950).

    Google Scholar 

  • P. N. Makkaveev, and V. A. Bol’shakov, “Variations of carbon dioxide content,” in Geology of Seas and Oceans, Ed. by A. P. Lisitzin (GEOS, Moscow, 2015), pp. 176–180.

    Google Scholar 

  • K. K. Markov, Paleogeography (MGU, Moscow, 1960) [in Russian].

    Google Scholar 

  • O. Moore, H. Buss, A. Dosseto, K. Maher, “Tales of the deep: weathering at the base of critical zone,” Abstr. Goldschmidt 2015 Conf. (Prague, 2015), no. 2185.

    Google Scholar 

  • I. O. Murdmaa, Ocean Facies (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  • C. D. Ollier, “Mountain uplift and the Neotectonic period,” Annal. Geophys. 49 (1), 437–450 (2006).

    Google Scholar 

  • M. O’Regan, J. King, J. Backman, M. Jakobsson, H. Pälike, K. Moran, C. Heil, T. Sakamoto, T. M. Cronin, and R. W. Jordan, “Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge,” Paleoceanography 23, PA1S19 (2008). doi 10.1029/ 2007PA001551

    Google Scholar 

  • V. A. Poselov, G. P. Avetisov, V. V. Butsenko, S. M. Zholondz, V. D. Kaminsky, and S. P. Pavlov, “The Lomonosov Ridge as a natural extension of the Eurasian continental margin into the Arctic Basin,” Russ. Geol. Geophys. 53 (12), 1662–1680 (2012).

    Article  Google Scholar 

  • O. Ragueneau, P. Tréguer, A. Leynaert, R. F. Anderson, M. A. Brzezinski, D. J. DeMaster, R. C. Dugdale, J. Dymond, V. Martin-Jézéquel, D. M.Nelson, and B. Quéquiner, “Review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy,” Global Planet. Change 26, 317–365 (2000).

    Article  Google Scholar 

  • E. A. Romankevich and A. A. Vetrov, “Fluxes and masses of organic carbon in the ocean,” Geochem. Int. 35 (9), 829–836 (1997).

    Google Scholar 

  • A. B. Ronov, History of Sedimentation and Oscillatory Movements of the European USSR: Volumetric Data, (Geofiz. Inst. AN SSSR, Moscow, 1949) [in Russian].

    Google Scholar 

  • A. B. Ronov, V. E. Khain, and A. N. Balukhovskii, “Quantitative regularities in the distribution of sediments in ocean,” Litol. Polezn Iskop., No. 2, 3–16(1986).

    Google Scholar 

  • A. B. Ronov, Stratisphere or Sedimentary Shell of the Earth (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  • V. S. Savenko and A. V. Savenko, Geochemistry of Phosphorus in the Global Hydrological Cycle (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  • P. F. Sexton and S. Barker, “Onset of “Pacific-style” deepsea sedimentary carbonate cycles at the mid-Pleistocene transition,” Earth Planet. Sci. Lett. 321–322, 81–94 (2012).

    Article  Google Scholar 

  • R. Stein and K. Fahl, “Scientific Cruise Report of the Arctic Expedition ARK-XIII/2 of RV “Polarstern” in 1997,” Ber. Polarforsch. 255, (1997).

  • R. Stein, J. Matthiessen, F. Niessen, and E. V. Bazhenova, “Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean),” Polarforschung 79(2), 97–121 (2010).

    Google Scholar 

  • M. Steinberg, “Fluctuations of the accumulation rate of the sediments deposited in the South Atlantic Ocean during the last 120 m.y.,” Compt. Rend. de l’Acad. Des Sci. 308 Ser. II (10), 941–946 (1989).

    Google Scholar 

  • V. N. Stepanov, “Main parameters of the World Ocean and its most important parts,” Okeanologiya 1 (1), 3–18 (1961).

    Google Scholar 

  • N. M. Strakhov, Comparative–lithological direction and its closest tasks,” Byul. Mosk. O-va Ispyt. Prir. Otd. Geol. 20 (3–4), 34–48 (1945).

    Google Scholar 

  • J. Thiede and G. Hempel, “Die Expedition ARKTIS VII/1 mit FS “Polarstern” 1990,“ Ber. Polarforsch. 80, (1991).

  • J. Thiede and W. U. Ehrmann, “Late Mesozoic and Cenozoic sediment flux to the central North Atlantic,” in North Atlantic Paleoceanography, Ed. by C. P. Summerhayes and N. J. Shackleton, Geol. Soc. Amer. Spec. Publ., No. 21, 3–15 (1986).

    Google Scholar 

  • V. G. Trifonov, Neotectconics of Eurasia (Nauchnyi Mir, Moscow, 1999) [in Russian].

    Google Scholar 

  • V. G. Trifonov, “Proportion of collisional and orogenic processes,” in Tectonics, Geodynamics, and Ore Genesis of Fold Belts and Platforms, Ed. by K. E. Degtyarev (GEOS, Moscow, 2016), pp. 237–241 [in Russian].

    Google Scholar 

  • V. G. Trifonov and S. Yu. Sokolov, “On the way to postplatetectonics,” Vestn. Ross. Akad. Nauk 85 (7), 605–615 (2015).

    Google Scholar 

  • V. G. Trifonov, O. V. Soboleva, R. V. Trifonov, and R. A. Vostrikov, Modern Geodynamics of the Alpine–Himalayan Collisional Belt (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  • Trotsyuk, V. Ya., “Specifics in distribution of organic carbon in stratosphere above sea and ocean floor,” Dokl. Akad. Nauk SSSR 231 (1), 165–168 (1976).

    Google Scholar 

  • T. H. Van Andel, C. R. Heath, and T. C. Moore, “Cenozoic tectonics, sedimentation and paleoceanography of the central equatorial Pacific,” Geol. Soc. Amer. Mem. 143, 1–65 (1975).

    Article  Google Scholar 

  • J. D. Veizer, Ala, K. Azmy, P. Bruckschen, F. Bruhn, G. A. F. Garden, A. Diener, S. Ebneth, Y. Godderis, T. Jasper, Ch. Korte, F. Pawellek, O. G. Podlaha, and H. Strauss, “87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater,” Chem. Geol. 161, 59–88 (1999).

    Article  Google Scholar 

  • D. S. Wilson, S. S. R. Jamieson, and P. J. Barrett, “Antarctic topography at the Eocene–Oligocene boundary,” Palaeogeogr. Palaeoclimatol. Palaeoecol., (2011). doi 10.1016/j.palaeo.2011.05.028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Original Russian Text © M.A. Levitan, 2017, published in Geokhimiya, 2017, No. 5, pp. 413–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitan, M.A. Quantitative parameters of Pleistocene pelagic sedimentation in the World Ocean: Global trends and regional features. Geochem. Int. 55, 428–441 (2017). https://doi.org/10.1134/S0016702917050081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917050081

Keywords

Navigation