Skip to main content
Log in

Fundamentals of the mantle carbonatite concept of diamond genesis

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In the mantle carbonatite concept of diamond genesis, the data of a physicochemical experiment and analytical mineralogy of inclusions in diamond conform well and solutions to the following genetic problems are generalized: (1) we substantiate that upper mantle diamond-forming melts have peridotite/eclogite–carbonatite–carbon compositions, melts of the transition zone have (wadsleyite ↔ ringwoodite)–majorite–stishovite–carbonatite–carbon compositions, and lower mantle melts have periclase/wüstite–bridgmanite–Ca-perovskite–stishovite–carbonatite–carbon compositions; (2) we plot generalized diagrams of diamondforming media illustrating the variable compositions of growth melts of diamonds and paragenetic phases, their genetic relationships with mantle matter, and classification relationships between primary inclusions; (3) we study experimentally equilibrium diagrams of syngenesis of diamonds and primary inclusions characterizing the diamond nucleation and growth conditions and capture of paragenetic and xenogenic minerals; (4) we determine the fractional phase diagrams of syngenesis of diamonds and inclusions illustrating regularities in the ultrabasic–basic evolution and paragenetic transitions in diamond-forming systems of the upper and lower mantle. We obtain evidence for physicochemically similar melt–solution ways of diamond genesis at mantle depths with different mineral compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Akaishi, “Effect of Na2O and H2O addition to SiO2 on the synthesis of diamond from graphite,” in Proceedings of 3rd NIRIM International symposium on advanced materials, Tsukuba, Ibaraki, Japan, (Tsukuba, 1996), pp. 75–80.

    Google Scholar 

  • M. Akaogi, “Phase transitions of minerals in the transition zone and upper part of the lower mantle,” in Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 1–13 (2007).

    Article  Google Scholar 

  • R. J. Angel, M. Alvaro, F. Nestola, and M. L. Mazzucchelli, “Diamond thermoelastic properties and implications for determining the pressure of formation of diamond–inclusion system,” Russ. Geol. Geophys. 56 (1–2), 273–285(2015).

    Google Scholar 

  • A. V. Bobrov and Yu. A. Litvin, “Mineral equilibria of diamond- forming carbonate-silicate systems,” Geochem. Int. 49 (13), 1267–1363 (2011).

    Article  Google Scholar 

  • F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Man-made diamond,” Nature 176, 51–54 (1955).

    Article  Google Scholar 

  • V. G. Butvina and Yu. A. Litvin, “Phase relations in the forsterite- diopside-jadeite system,” Geophys. Res. Abstr., 11, EGU2009-3238 (2009).

  • A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN, Novosibirsk, 196 p., 1997) [in Russian].

    Google Scholar 

  • V. K. Garanin, G. P. Kudryavtseva, A. S. Marfunin, and O. A. Mikhailichenko, Inclusions in Diamond and Diamondiferous Rocks (MGU, Moscow, 1991) [in Russian].

    Google Scholar 

  • T. Gasparik and Yu. A. Litvin, “Stability of Na2Mg2Si2O7 and melting relations on the forsterite–jadeite join at pressures up to 22 GPa,” Eur. J. Mineral. 9 (2), 311–326 (1997).

    Article  Google Scholar 

  • J. W. Harris, “The recognition of diamond inclusions. Pt. 1: Syngenetic inclusions,” Ind. Diamond Rev. 28, 402–410 (1968).

    Google Scholar 

  • B. Harte and J. W. Harris, “Lower mantle mineral association preserved in diamonds,” Mineral. Mag. 58A, 384–385 (1994).

    Article  Google Scholar 

  • B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 180–215 (2010).

    Article  Google Scholar 

  • S. M. Hong M. Akaishi, and S. Yamaoka, “Nucleation of diamond in the system of carbon and water under very high pressure and temperature,” J. Cryst. Growth 200, 326–328 (1999).

    Article  Google Scholar 

  • E. S. Izraeli, J. W. Harris, and O. Navon, “Brine inclusions in diamonds: a new upper mantle fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  • F. Kaminsky, “Mineralogy of the lower mantle: a review of “super-deep” mineral inclusions in diamond,” Earth Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  • F. Kaminsky, R. Wirth, S. Matsyuk, A. Schreiber, and R. Thomas, “Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas,” Mineral. Mag. 73(5), 797–816 (2009).

    Article  Google Scholar 

  • F. V. Kaminsky, R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamonds from Juina, Brazil: new minerals in the carbonate-halide association,” Can. Mineral. 51, 669–688 (2013).

    Article  Google Scholar 

  • A. V. Kuzyura, Yu. A. Litvin, and T. Jeffries, “Interface partition coefficients of trace elements in carbonate–silicate parental media for diamonds and paragenetic inclusions (experiments at 7.0–8.5 GPa),” Russ. Geol. Geophys. 56 (1-2), 221–231 (2015).

    Article  Google Scholar 

  • Yu. A. Litvin, “Mechanism of diamond formation in the metal–carbon systems,” Izv. Akad. Nauk SSSR. Inorg. Mater. 4, 175–181 (1968).

    Google Scholar 

  • Yu. A. Litvin, Physicochemical Studies of Melting of Materials from the Deep Earth (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  • Yu. A. Litvin, “Alkaline-chloride components in processes of diamond growth in the mantle and high-pressure experimental conditions,” Dokl. Earth Sci. 389(3), 388–391 (2003).

    Google Scholar 

  • Yu. A. Litvin, “High-pressure mineralogy of diamond genesis,” in Advances in High-Pressure Mineralogy, Ed by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 83–103 (2007).

    Article  Google Scholar 

  • Ya. A. Litvin, “The physicochemical conditions of diamond formation in the mantle matter: experimental studies,” Russ. Geol. Geophys. 50 (12), 1188–1200 (2009).

    Article  Google Scholar 

  • Yu. A. Litvin, “Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite–carbonatite–sulfide–diamond system,” Geol. Ore Deposits 54 (6), 443–457 (2012).

    Article  Google Scholar 

  • Yu. A. Litvin, “Physicochemical conditions of syngenesis of diamond and heterogenous inclusions in carbonate–silicate parental melts (experimental studies),” Mineral. Zh. 35 (2), 5–24 (2013).

    Google Scholar 

  • Yu. A. Litvin, “The stishovite paradox in the genesis of superdeep diamonds,” Dokl. Earth Sci. 455 (1), 274–278 (2014).

    Article  Google Scholar 

  • Yu. A. Litvin, and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 372, 867–870 (2000).

    Google Scholar 

  • Yu. A. Litvin, L. T. Chudinovskikh, and V. A. Zharikov, “Experimental Crystallization of Diamond and Graphite from Alkali–Carbonate Melts at 7–11 GPa,” Dokl. Earth Sci. 355, 908–911 (1997).

    Google Scholar 

  • Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The first synthesis of diamond in sulfide–carbon systems: the role of sulfides in diamond genesis,” Dokl. Earth Sci. 382 (1), 40–43 (2002).

    Google Scholar 

  • Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental Characterization of Diamond Crystallization in Melts of Mantle Silicate–Carbonate–Carbon Systems at 7.0–8.5 GPa,” Geochem. Int. 46 (6), 531–553 (2008).

    Article  Google Scholar 

  • Yu. A. Litvin, P. G. Vasil’ev, A. V. Bobrov, V. Yu. Okoemova, and A. V. Kuzyura, “Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment,” Geochem. Int. 50 (9), 726–759 (2012).

    Article  Google Scholar 

  • Yu. A. Litvin, A. V. Spivak, N. A. Solopova, and L. S. Dubrovinsky, “On origin of lower-mantle diamonds and their primary inclusions,” Phys. Earth Planet. Inter. 228 (The Liebermann Volume), 176–185 (2014). http://dx.doi.org/ doi 10.1016/j/pepi/2013.12.007

    Article  Google Scholar 

  • A. M. Logvinova, R. Wirth, E. N. Fedorova, and N. V. Sobolev, “Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation,” Eur. J. Mineral. 20(3), 317–331 (2008).

    Article  Google Scholar 

  • S. Maaloe, Principles of Igneous Petrology (Springer, Berlin, 1985).

    Book  Google Scholar 

  • A. A. Marakushev, “Peridotite nodules in kimberlites as indicators of deep lithosphere structure,” in Reports of Soviet Geologists on 27th Session of the International geological Congress (Nauka, Moscow, 1984), pp. 153–160 [in Russian].

    Google Scholar 

  • N. M. McKenna, J. J. Gurney, J. Klump, and J. M. Davidson “Aspects of diamond mineralization and distribution at the Helam Mine, South Africa,” Lithos 77, 193–208 (2004).

    Article  Google Scholar 

  • H. O. A. Meyer and F. R. Boyd, “Composition and origin of crystalline inclusions in natural diamonds,” Geochim. Cosmochim. Acta 36, 1255–1273 (1972).

    Article  Google Scholar 

  • O. Navon, “High internal pressures in diamond fluid inclusions determined by infrared absorption,” Nature 353, 746–748 (1991).

    Article  Google Scholar 

  • O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle-derived fluids in diamond microinclusions,” Nature 335, 784–789 (1988).

    Article  Google Scholar 

  • Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, and A. F. Khokhryakov, “Fluid-bearing alkaline carbonate melts as the medium for formation of diamonds in the Earth mantle: an experimental study,” Lithos 60 (3–4), 145–149 (2002).

    Article  Google Scholar 

  • N. P. Pokhilenko, N. V. Sobolev, J. A. McDonald, A. E. Hall, E. S. Yefimova, D. A. Zedgenizov, A. M. Logvinova, and L. F. Reimers, “Crystalline inclusions in diamonds from kimberlites of the Snap Lake area (Slave Craton, Canada): new evidences for the anomalous lithospheric structure,” Dokl. Earth Sci. 380 (7), 806–811(2001).

    Google Scholar 

  • A. E. Ringwood, “A model for the upper mantle,” J. Geophys. Res. 67, 857–866 (1962).

    Article  Google Scholar 

  • A. E. Ringwood, Composition and Petrology of the Eath’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  • V. S. Shatskii, D. A. Zedgenizov, and A. L. Ragozin, “Majoritic garnets in diamonds from placers of the northeastern Siberian Platform,” Dokl. Earth Sci. 432 (6), 835–838 (2010).

    Article  Google Scholar 

  • M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58, 761–771 (1994).

    Article  Google Scholar 

  • A. V. Shushkanova and Yu. A. Litvin, “Experimental evidence for liquid immiscibility in the model system CaCO3–pyrope–pyrrhotite at 7.0 GPa: the role of carbonatite and sulfide melts in diamond genesis,” Can. Mineral. 46, 991–1005 (2008).

    Article  Google Scholar 

  • N. V. Sobolev, Deep-Seated Inclusions in Mantle and the Problem of the Composition of the Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  • N. V. Sobolev, B. A. Fursenko, and S. V. Goryainov, “Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer,” Proc. U.S. Nat. Acad. Sci. 97(22), 11875–11879 (2000).

    Article  Google Scholar 

  • A. G. Sokol, Yu. N. Pal’yanov, G. A. Pal’yanova, A. F. Khokhryakov, and Yu. M. Borzdov. “Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions,” Diamond Relat. Mater. 10, 2131–2136 (2001).

    Article  Google Scholar 

  • A. Spivak, N. Solopova, L. Dubrovinsky, and Yu. Litvin, “Melting relations of multicomponent carbonate MgCO3–FeCO3–CaCO3–Na2CO3 system at 11–26 GPa: application to deeper mantle diamonds formation,” Phys. Chem. Miner. (2015). doi: 10.1007/s00269-015-0765-6

    Google Scholar 

  • A. V. Spivak, Extended Abstract of Doctoral Dissertation in Geology and Mienralogy (MGU, Moscow, 2016).

    Google Scholar 

  • T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guines) II: Lower mantle inclusion paragenesis,” Contrib. Mineral. Petrol. 140, 16–27 (2000).

    Article  Google Scholar 

  • T. Taniguchi, D. Dobson, A. P. Jones, R. Rabe, and H. J. Milledge, “Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite–K2Mg(CO3)2 system at high pressure of 9–10 GPa region,” J. Mater. Res. 11, 2622–2632 (1996).

    Article  Google Scholar 

  • Y. Wang and H. Kanda, “Growth of HTHP diamonds in alkali haloids: possible effect of oxygen contamination,” Diamond Relat. Mater. 7, 57–63 (1998).

    Article  Google Scholar 

  • W. Wang, “Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite parageneses,” Earth Planet. Sci. Lett. 160, 831–843 (1998).

    Article  Google Scholar 

  • S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, “Crystallization of diamond from CO2 fluid at high pressure and high temperature,” J. Cryst. Growth 234, 5–8 (2002).

    Article  Google Scholar 

  • H. S. Yoder, Generation of Basaltic Magma (National Academy of Sciences, Washington, 1976).

    Google Scholar 

  • Zedgenizov, D. A. Kagi, H. Shatsky, V. S. and Sobolev, N. V. “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68, 61–73 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, A.V. Spivak, A.V. Kuzyura, 2016, published in Geokhimiya, 2016, No. 10, pp. 873–892.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Spivak, A.V. & Kuzyura, A.V. Fundamentals of the mantle carbonatite concept of diamond genesis. Geochem. Int. 54, 839–857 (2016). https://doi.org/10.1134/S0016702916100086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916100086

Keywords

Navigation