Skip to main content
Log in

Calorimetric determination of the enthalpy of formation of natural saponite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The enthalpies of formation of natural trioctahedral smectite from elements were determined for the first time by high-temperature melt solution calorimetry using Tian-Calvet microcalorimeter: Δ f H 0(298.15 K): −5799.1 ± 5.1 kJ/mol for saponite Ca0.1Na0.1K0.1(Mg2.6Fe 2+0.1 Fe 3+0.2 )[Si3.6Al0.4O10](OH)2 (Arkhangelsk diamond province) and −5937.3 ± 6.0 kJ/mol for saponite Ca0.4(Mg2.6Al0.2)[Si3.4Al0.6O10](OH)2 (Mt. Kukisvumchorr, Khibiny). The enthalpies of formation of magnesian and magnesium-iron saponites of theoretical composition were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. M. Apollonov, V. L. Bershova, V. K. Garanin, V. P. Grib, G. P. Kudryavtseva, and T. V. Posukhova, “Ecological aspects of mineralogical material science by the example of the Lomonosov diamond deposit,” Zap. Vseross. Mineral. O-va, No. 3, 1–6 (1992).

    Google Scholar 

  • V. M. Apollonov, V. N. Verzhak, K. V. Garanin, V. K. Garanin, G. P. Kudryavtseva, and V. G. Shlykov, “Saponite from the Lomonosov diamond deposit,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 2, 64–73 (2004).

    Google Scholar 

  • P. N. Chirvinskii, “Saponite,” in Minerals of the Khibiny and Lovozero Tundras (Akad. Nauk SSSR, Moscow, 1937), pp. 286–287 [in Russian].

    Google Scholar 

  • V. A. Drits and A. G. Kossovskaya, Clay Minerals: Smectites and Mixed-Layer Minerals (Moscow, Nauka, 1990) [in Russian].

    Google Scholar 

  • H. Gailhanou, P. Blanc, J. Rogez, G. Mikaelian, H. Kawaji, J. Olives, M. Amouric, R. Denoyel, S. Bourrelly, V. Montouillout, P. Vieillard, C. I. Fialips, N. Michau, and E. Gaucher, “Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: enthalpies of formation, heat capacities, entropies and Gibbs energies of formation,” Geochim. Cosmochim. Acta 89, 279–301 (2012).

    Article  Google Scholar 

  • H. Gailhanou, J. C. Miltenburg, J. Roges, J. Olives, M. Amouric, E. C. Gaucher, and P. Blanc, “Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixedlayer illite-smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies,” Geochim. Cosmochim. Acta 71, 5463–5473 (2007).

    Article  Google Scholar 

  • V. P. Ivanova, B. K. Kasatov, T. N. Krasavina, and E. L. Rozinova, Thermal Analysis of Minerals and Rocks (Nedra, Leningrad, 1974) [in Russian].

    Google Scholar 

  • I. A. Kiseleva and L. P. Ogorodova, “Application of high temperature dissolution calorimetry for determination the enthalpy of formation of hydroxyl-bearing minerals by the example of talc and tremolite,” Geokhimiya, No, 12, 1745–1755 (1983).

    Google Scholar 

  • I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO-MgO-SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  • I. A. Kiseleva, “Thermodynamic properties and pyrope stability,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  • I. A. Kiseleva, A. R. Kotelnikov, K. V. Martynov, L. P. Ogorodova, and Yu. K. Kabalov, “Thermodynamic properties of strontianite-witherite solid solution (Sr,Ba)CO3,” Phys. Chem. Miner. 21, 392–400 (1994).

    Article  Google Scholar 

  • I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites—heulandite and stilite,” Am. Mineral. 86, 448–455 (2001).

    Google Scholar 

  • G. P. Kudryavtseva, A. V. Podgaetsku, K. V. Garanin, V. K. Garanin, V. N. Apollonov, A. T. Bondarenko, E. B. Bushueva, E. B. Verzhak, and E. M. Verichev, “Mineral composition and petrophysical properties of kimberlites and related rocks of the Zimnii Bereg,” Izv. Vyssh. Uch. Zaved., Geol. Razved., No. 3, 29–35 (2003).

    Google Scholar 

  • L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and V. V. Krupskaya, “Thermochemical study of natural montmorillonite,” Geochem. Int. 51(6), 484–494 (2013).

    Article  Google Scholar 

  • A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  • L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Enthalpy of formation of talc Mg3[Si4O10](OH)2 according to dissolution calorimetry,” Russ. J. Phys. Chem. 85(9), 1489–1491 (2011).

    Article  Google Scholar 

  • L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermodynamic properties of natural erionite based on calorimetric data,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 6, 55–58 (2001).

    Google Scholar 

  • L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta, 403, 251–256 (2003).

    Article  Google Scholar 

  • O. Omotoso, D. K. McCarty, R. Kleeberg, and S. Hillier, “Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds cup contest,” Clays Clay Miner. 54(6), 748–760 (2006).

    Article  Google Scholar 

  • N. V. Posukhova, S. A. Dorofeev, K. V Garanin, and Gao Siaoin, “Diamond industry wastes: mineral composition and recycling,” Mosk. Univ. Geol. Bull. 68(2), 96–107 (2013).

    Article  Google Scholar 

  • R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

    Google Scholar 

  • H. W. Van der Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures (Elsevier, Amsterdam-Oxford-New York, 1976).

    Google Scholar 

  • O. Vidal and B. Dubacq, “Thermodynamic modeling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity,” Geochim. Cosmochim. Acta 73, 6544–6564 (2009).

    Article  Google Scholar 

  • P. Vieillard, “A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale,” Clays Clay Miner. 48(4), 459–473 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, I.A. Kiseleva, L.V. Mel’chakova, M.F. Vigasina, V.V. Krupskaya, V.V. Sud’in, 2015, published in Geokhimiya, 2015, No. 7, pp. 617–623.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Kiseleva, I.A., Mel’chakova, L.V. et al. Calorimetric determination of the enthalpy of formation of natural saponite. Geochem. Int. 53, 617–623 (2015). https://doi.org/10.1134/S0016702915070071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915070071

Keywords

Navigation