Skip to main content
Log in

Radioactive elements in collisional and within-plate Sodic-Potassic Granitoids: Accumulation levels and metallogenic significance

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

New data are reported on the content of radioactive elements in the Precambrian Na-K granitoids from the southwestern margin of the Siberian Craton, Aldan and Ukrainian shields, and Kursk-Voronezh Massif. Analytical data on other regions were generalized for comparison. Two global epochs of Na-K granitoid magmatism bearing elevated contents of radioactive elements (U, Th, K) were distinguished in the Early Precambrian (in Ga): Neoarchean (2.8-2.6) and Late Paleoproterozoic (1.9-1.75). Mesoarchean (3.1-2.8 Ga) epoch of Na-K granite formation has been additionally distinguished at the Australian, South African, and Canadian shields. These epochs of granitization provided high maturity of the crust: geochemical differentiation of the oldest continental blocks and their geochemical and metallogenic specialization for trace elements and RAE. In the southern margin of the Siberian Craton, the most intense granite formation occurred in the Late Paleoproterozoic. The extended South Siberian belt of collisional and within-plate Na-K granitoids is characterized by intense influx of RAE and other trace elements in the upper crustal shell. The southwestern margin of the craton (Yenisei Range) was spanned by repeated Late Neoproterozoic Na-K granite formation, with wide development of collisional and within-plate Na-K granites having elevated Th content and [Th]/[U] ratio. The higher RAE concentrations are typical of within-plate Paleo and Neoproterozoic granitoids. The highest uranium content was found in the postcollisional and within-plate Na-K granites and subalkaline leucogranites. Uranium ore concentrations were formed at the riftogenic stages of evolution of these crustal blocks, when within-plate subalkaline acid magmatism and accompanying hydrothermal metamorphism overprinted granitized crystalline massifs, including high-U sedimentary and volcanic complexes. Areas with the most favorable geological-geochemical environments for the formation of uranium mineralization were distinguished in the southern margin of the Siberian Craton and its nearest folded framing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Taylor and S. M. McLennan, Continental Crust: its Composition and Evolution (Brackwell, London, 1985).

    Google Scholar 

  2. A. D. Nozhkin, “Radioactive elements in the crustal evolution of the southwestern Siberian Platform,” Geol. Geofiz., No. 7, 1180–1189 (1997).

    Google Scholar 

  3. A. D. Nozhkin, V. P. Kovalev, S. V. Mel’gunov, and Yu.M. Puzankov, “Geochemical typification of continental blocks as the basis for metallogenic analysis,” in Geochemistry of the Ore-Forming Systems and Metallogenic Analysis (Nauka, Novosibirsk, 1989), pp. 22–47 [in Russian].

    Google Scholar 

  4. L. P. Rikhvanov, Radiogeochemical Typification of Ore-Magmatic Complexes (Izdatel’stvo SO RAN, Filial “Geo”, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  5. A. D. Nozhkin, “Geological-geochemical evidence for maturity of the Archean complexes and reasons for ore potential of the continental blocks,” Geol. Geofiz., No. 3, 41–48 (1983).

    Google Scholar 

  6. K. C. Condie, “Constraints on the origin of Precambrian post-tectonic granites,” Spec. Pap. Geol. Surv. Finl., No. 8, 32 (1989).

    Google Scholar 

  7. V. K. Kuz’min, V. A. Glebovitskii, N. V. Rodionov, A. V. Antonov, E. S. Bogomolov, S. A. Sergeev, “Main formation stages of the Paleoarchean crust in the Kukhtui Inlier of the Okhotsk Massif,” Stratigr. Geol. Correlation 17(4), 355–372 (2009).

    Article  Google Scholar 

  8. A. A. Smyslov, U. I. Moiseenko, and T. Z. Chadovich, Heat Region and Radioactivity of the Earth (Nedra, Leningrad, 1979) [in Russian].

    Google Scholar 

  9. M. A. G. Andreoli, L. J. Robb, and M. Meyer, “Granitoids of the pre-Witwatersrand basement: clues to the source of uranium placer mineralisation,” in Recognition of Uranium Province. Techn. Comm. Meet., Vienna, 1985 (IAEA, Vienna-London, 1988), pp. 213–234.

    Google Scholar 

  10. F. M. Meyer, L. J. Robb, W. U. Reimold, and H. de Bruiyn, “Contrasting lowand high-Ca granites in the Archean Barberton Mountain Land, southern Africa,” Lithos, No. 32, 63–76 (1994).

    Google Scholar 

  11. M. J. Bickle, L. F. Bettenay, H. J. Chapman, D. I. Groves, N. J. McNaughton, I. H. Campbell, and J. R. de Laeter, “The age and origin of younger granitic plutons of the Shaw Batholith in the Archaean Pilbara Block, Western Australia,” Contrib. Mineral. Petrol. 101(3), 361–376 (1989).

    Article  Google Scholar 

  12. J. S. Stuckless, A. T. Miesch, and D. B. Wenner, “Geochemistry and petrogenesis of an Archaean granite from the Owl Creek Mountains, Wyoming,” in Chemical and Isotopic Studies of Granitic Archaean Rocks, Owl Creek Mountains, Wyoming, U.S. Geol. Surv. Prof. Pap., No. 1388-A, 1–21 (1986).

    Google Scholar 

  13. V. P. Chekulaev, S. B. Lobach-Zhuchenko, and L. K. Levsky, “Archean granites in Karelia as indicators of the composition and age of the local continental crust,” Geochem. Int. 35(8), 704–715 (1997).

    Google Scholar 

  14. N. P. Shcherbak, G. V. Artemenko, E. N. Bartnitskii, and E. A. Tatarinova, “Uranium-lead age of the Galeshchinsky and Mokromoskovsky granites,” Dokl. Akad. Nauk Ukr. SSR, No. 3, 24–27 (1990).

    Google Scholar 

  15. A. D. Nozhkin and E. M. Krestin, Radioactive Elements in the Early Precambrian Rocks (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  16. D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov, E. B. Sal’nikova, E. V. Sklyarov, and S. Z. Yakovleva, “The age and geodynamic interpretation of the Kitoi granitoid complex (southern Siberian Craton),” Russ. Geol. Geophys. 46(11), 1121–1133 (2005).

    Google Scholar 

  17. A. B. Kotov, Doctoral Dissertation in Geology and Mineralogy in the Form of Scientific Report (Institut geologii i geokhronologii dokembriya RAN, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  18. A. P. Smelov, A. N. Zedgenizov, and V. F. Timofeev, “Aldan-Stanovoy Shield,” in Tectonics, Geodynamics, and Metallogeny of the Sakha Republic (Yakutia) (Maik “Nauka/Interperiodika”, Moscow, 2001) [in Russian].

    Google Scholar 

  19. P. F. Hoffman, “United plates of America, the birth of craton: Early Proterozoic assembly and growth of Laurentia,” Ann. Rev. Earth Planet. Sci. 126, 543–603 (1988).

    Article  Google Scholar 

  20. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi mir, Moscow, 2001) [in Russian].

    Google Scholar 

  21. V. V. Bryntsev, Precambrian Granitoids of the Northwestern Sayan Area (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  22. T. V. Donskaya, E. V. Bibikova, A. M. Mazukabzov, I. K. Kozakov, D. P. Gladkochub, T. I. Kirnozova, Yu. V. Plotkina, and L. Z. Reznitskii, “The Primorsky granitoid complex of western Cisbaikalia: geochronology and geodynamic typification,” Russ. Geol. Geophys. 44(10), 968–979 (2003).

    Google Scholar 

  23. T. V. Donskaya, D. P. Gladkochub, V. P. Kovach, and A. M. Mazukabzov, “Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian Craton,” Petrology 13(3), 229–252 (2005).

    Google Scholar 

  24. A. M. Larin, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, L. B. Makar’ev, A. N. Timashkov, N. G. Berezhnaya, and S. Z. Yakovleva, ”New data on the age of granites of the Kodar and Tukuringra complexes, Eastern Siberia: geodynamic constraints,” Petrology 8(3), 238–248 (2000).

    Google Scholar 

  25. A. M. Larin, E. B. Sal’nikova, A. B. Kotov, V. I. Kovalenko, E. Yu. Rytsk, S. Z. Yakovleva, N. G. Berezhnaya, V. P. Kovach, V. V. Buldygerov, and N. A. Sryvtsev, “The North Baikal volcanoplutonic belt: age, formation duration, and tectonic setting,” Dokl. Earth Sci. 392(4), 963–967 (2003).

    Google Scholar 

  26. V. I. Levitskii, A. I. Mel’nikov, L. Z. Reznitskii, E. B. Bibikova, T. I. Kirnozova, I. K. Kozakov, V. A. Makarov, and Yu. V. Plotkina, “Early Proterozoic postcollisional granitoids in the southwestern Siberian Craton,” Russ. Geol. Geophys. 43(8), 717–731 (2002).

    Google Scholar 

  27. A. D. Nozhkin, “Early Proterozoic marginal-continental complexes of the Angara Fold Belt and features of its metallogeny,” Geol. Geofiz. 40 (1999).

  28. A. D. Nozhkin, E. V. Bibikova, O. M. Turkina, and V. A. Ponomarchuk, “U-Pb, Ar-Ar, and Sm-Nd isotope-geochronological study of porphyritic subalkaline granites of the Taraka Pluton (Yenisei Range),” Russ. Geol. Geophys. 44(9), 842–852 (2003).

    Google Scholar 

  29. A. D. Nozhkin, O. M. Turkina, and T. B. Bayanova, “Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U-Pb geochronological and Sm-Nd isotopic data,” Dokl. Earth Sci. 428(7), 1192–1197 (2009).

    Article  Google Scholar 

  30. O. M. Turkina, E. V. Bibikova, and A. D. Nozhkin, “Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian Craton,” Dokl. Earth Sci. 389(2), 159–163 (2003).

    Google Scholar 

  31. O. M. Turkina, A. D. Nozhkin, and T. B. Bayanova, “Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian Craton,” Petrology 14(3), 262–283 (2006).

    Article  Google Scholar 

  32. E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and A. D. Nozhkin, “Age boundaries in the Early Precambrian geological evolution of the Yenisei Range,” Stratigr. Geol. Korrelyatsiya 1(1), 35–40 (1993).

    Google Scholar 

  33. S. I. Arbuzov and S. V. Novoselov, “Native iron in the granites of the Tarak Complex of the South Yenisei Ridge,” Zap. Vseros. Mineral. O-va. 124(1), 75–78 (1995).

    Google Scholar 

  34. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites of the Kan and Sharyzhalgai Complexes (OIGGM SO RAN, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  35. J. B. Whalen, K. L. Currie, and B. W. Chappel, “A-type granites: geochemical characteristics and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  36. O. M. Rosen, V. P. Andreev, A. N. Belov, E. V. Bibikova, V. L. Zlobin, S. M. Lyapunov, S. Yu. Milanovskii, A. D. Nozhkin, V. S. Rachkov, V. E. Sonyushkin, M. K. Sukhanov, and L. I. Shakhot’ko, Archean of the Anabar Shield and Problems of the Earth’s Evolution (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  37. Ya. N. Belevtsev, Yu. P. Egorov, V. K. Titov, A. N. Sukhinin, Z. M. Grechishnikova, V. B. Zayats, V. A. Tikhonenko, and A. M. Zhukova, “Average uranium and thorium contents in the major rock types of the Ukrainian Shield,” Geol. Zh. 35(4), 96–117 (1975).

    Google Scholar 

  38. M. Nironen, “Proterozoic orogenic granitoid rocks,” in Precambrian Geology of Finland-Key to the Evolution of the Fennoscandian Shield, Ed. by M. Lethinen, P. Nurmi, and O. T. Ramo (Elsevier Science, Amsterdam, 2005), pp. 443–479.

    Chapter  Google Scholar 

  39. V. R. Vetrin and N. V. Rodionov, “Sm-Nd systematics and petrology of postorogenic granitoids in the northern Baltic Shield,” Geochem. Int. 46(11), 1090–1106 (2008).

    Article  Google Scholar 

  40. A. D. Nozhkin, O. M. Turkina, Yu. M. Petrov, and Z. V. Malyasova, “Geology and radiogeochemistry of the Teya granite gneiss dome,” in Uranium and Thorium in Magmatic and Metamorphic Petrogenesis (Nauka, Novosibirsk, 1983), pp. 5–66 [in Russian].

    Google Scholar 

  41. A. D. Nozhkin, O. M. Turkina, T. B. Bayanova, N. G. Berezhnaya, A. N. Larionov, A. A. Postnikov, A. V. Travin, and R. E. Ernst, “Neoproterozoic rift and within-plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia,” Russ. Geol. Geophys. 49(7), 503–519 (2008).

    Article  Google Scholar 

  42. A. D. Nozhkin, A. S. Borisenko, and P. A. Nevol’ko, “Stages of Late Proterozoic magmatism and periods of Au mineralization of the Yenisei Ridge,” Russ. Geol. Geophys. 52(1), 124–143 (2011).

    Article  Google Scholar 

  43. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinov’ev, “New evidence for Grenville events on the Western margin of the Siberian Craton: the example of the Garevka metamorphic complex in the Transangarian Yenisei Ridge,” Dokl. Earth Sci. 438(2), 782–787 (2011).

    Article  Google Scholar 

  44. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, and V. V. Khomentovskii, “Riphean granite-gneiss domes of the Yenisei Range: geological structure and U-Pb isotope age,” Geol. Geofiz. 40(9), 1305–1313 (1999).

    Google Scholar 

  45. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and A. E. Vershinin, “The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series,” Dokl. Earth Sci. 436(2), 213–218 (2011).

    Article  Google Scholar 

  46. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47(1), 35–50 (2006).

    Google Scholar 

  47. Yu. A. Kuznetsov, Main Types of Magmatic Formations (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  48. A. E. Vernikovskaya, V. A. Vernikovsky, E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, A. V. Travin, and M. T. D. Vingate, “A-type leucogranite magmatism in the evolution of continental crust on the western margin of the Siberian Craton,” Russ. Geol. Geophys. 48(1), 3–16 (2007).

    Article  Google Scholar 

  49. A. D. Nozhkin and O. M. Turkina, “Geochemistry and tin potential of the leucogranite formation, Yenisei Ridge,” in Geochemistry of Trace, Rare-Earth, and Radioactive Elements in the Rock and Ore-Forming Processes (Nauka, Novosibirsk, 1989), pp. 37–67 [in Russian].

    Google Scholar 

  50. Tauson, L.V., Geochemical Types and Mineral Potential of Granitoids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  51. A. D. Nozhkin and Yu. P. Trofimov, “Alkaline granitesyenite association of the Srednevorogovsky Massif, Yenisei Ridge,” in Geology of the Non-Ferrous Metal Deposits of the Fold Framing of the Siberian Platform (Nauka, Novosibirsk, 1982), pp. 61–69 [in Russian].

    Google Scholar 

  52. V. V. Yarmolyuk and V. I. Kovalenko, “Late Riphean breakup between Siberia and Laurentia: evidence from intraplate magmatism,” Dokl. Earth Sci. 379(5), 525–528 (2001).

    Google Scholar 

  53. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. X. Li, “Global record of 1600-700 Ma large igneous provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  54. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladcochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  55. Large and Superlarge Ore Deposits. Volume 2. Strategic Types of Ore Raw Material, Ed. by N. P. Laverov and Yu. G. Safonov (IGEM RAN, Moscow, 2006) [in Russian].

    Google Scholar 

  56. G. A. Mashkovtsev, A. K. Miguta, S. S. Naumov, and A. V. Boitsov, “Program “Russian Uranium” and ways of its implementation,” Razved. Okhr. Nedr, No. 4, 16–20 (2005).

    Google Scholar 

  57. Uranium Deposits of Czechoslovakia, Ed. by Yu.A. Arapov and V.E. Boitsov (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  58. K. N. Shatagin, K. E. Degtyarev, V. N. Golubev, O. V. Astrakhantsev, and N. B. Kuznetsov, “Vertical and lateral heterogeneity of the crust beneath Northern Kazakhstan from geochronological and isotopicgeochemical data on Paleozoic granitoids,” Geotectonics, 35(5), 356–372 (2001).

    Google Scholar 

  59. N. P. Laverov, V. I. Velichkin, and M. V. Shumilin, “Uranium deposits of the Commonwealth countries: main economic-genetic types and their localization,” Geol. Rudn. Mestorozhd., No. 2, 3–18 (1992).

    Google Scholar 

  60. F. A. Letnikov, “Geochemistry of granitic complexes in the composite Zerenda Batholith, Northern Kazakhstan,” Geochem. Int. 43(7), 627–645 (2005).

    Google Scholar 

  61. V. N. Golubev, I. V. Chernyshev, A. B. Kotov, E. B. Sal’nikova, Yu. V. Gol’tsman, E. D. Bairova, and S. Z. Yakovleva, “The Strel’tsovka Uranium District: isotopic geochronological (U-Pb, Rb-Sr, Sm-Nd) characterization of granitoids and their place in the formation history of uranium deposits,” Geol. Ore Dep. 52(6), 496–513 (2010).

    Article  Google Scholar 

  62. V. Ziegler and J. Dardel, “Uranium deposits in Europe,” in Uranium Geochemistry, Mineralogy, Exploration, and Resources (IMM, London, 1984), pp. 140–161 [in Russian].

    Chapter  Google Scholar 

  63. K. C. Condie, “Episodic Continental Growth and Supercontinents: a Mantle Avalanche Connection?,” Earth Planet. Sci. Lett. 163, 97–108 (1998).

    Article  Google Scholar 

  64. N. L. Dobretsov, “Global geodynamic evolution of the Earth and global geodynamic models,” Russ. Geol. Geophys. 51(6), 592–610 (2010).

    Article  Google Scholar 

  65. T. Komiya, “Continental recycling and true continental growth,” Russ. Geol. Geophys. 52(12), 1516–1529 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Nozhkin.

Additional information

Original Russian Text © A.D. Nozhkin, L.P. Rikhvanov, 2014, published in Geokhimiya, 2014, No. 9, pp. 807–826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozhkin, A.D., Rikhvanov, L.P. Radioactive elements in collisional and within-plate Sodic-Potassic Granitoids: Accumulation levels and metallogenic significance. Geochem. Int. 52, 740–757 (2014). https://doi.org/10.1134/S0016702914090080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914090080

Keywords

Navigation