Skip to main content
Log in

Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

According to a known characterization, a function \(f\) belongs to the Sobolev space \(W^{p,1}(\mathbb{R}^n)\) of functions contained in \(L^p(\mathbb{R}^n)\) along with their generalized first-order derivatives precisely when there is a function \(g\in L^p(\mathbb{R}^n)\) such that

$$|f(x)-f(y)|\le |x-y|(g(x)+g(y))$$

for almost all pairs \((x,y)\). An analogue of this estimate is also known for functions from the Gaussian Sobolev space \(W^{p,1}(\gamma)\) in infinite dimension. In this paper the converse is proved; moreover, it is shown that the above inequality implies membership in appropriate Sobolev spaces for a large class of measures on finite-dimensional and infinite-dimensional spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bojarski, “Remarks on some geometric properties of Sobolev mapping”, Functional Analysis and Related topics, Sapporo, 1990, World Sci. Publ., River Edge, NJ, 1991, 65–76.

    Google Scholar 

  2. P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415.

    MathSciNet  MATH  Google Scholar 

  3. S. K. Vodop’yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Sibirsk. Mat. Zh., 37:6 (1996), 1269–1295; English transl.: Siberian Math. J., 37:6 (1996), 1113–1136.

    MathSciNet  MATH  Google Scholar 

  4. S. V. Pavlov and S. K. Vodop’yanov, “Grand Sobolev spaces on metric measure spaces”, Siberian Math. J., (2022).

    Google Scholar 

  5. J. Heinonen, “Nonsmooth calculus”, Bull. Amer. Math. Soc., 44:2 (2007), 163–232.

    Article  MathSciNet  Google Scholar 

  6. L. Ambrosio, E. Bruè, and D. Trevisan, “Lusin-type approximation of Sobolev by Lipschitz functions, in: Gaussian and \(RCD(K,\infty)\) spaces”, Adv. Math., 339 (2018), 426–452.

    Article  MathSciNet  Google Scholar 

  7. V. I. Bogachev, Gaussian Measures, Amer. Math. Soc., Providence, RI, 1998.

    Book  Google Scholar 

  8. V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Amer. Math. Soc., Providence, RI, 2010.

    Book  Google Scholar 

  9. V. I. Bogachev, “Sobolev classes on infinite-dimensional spaces”, Geometric Measure Theory and Real Analysis (L. Ambrosio ed.). Publications of the Scuola Normale Superiore, 17 Edizioni della Normale, Pisa, 2014, 1–56.

    Google Scholar 

  10. V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Uspekhi Mat. Nauk, 73:2 (2018), 3–74; English transl.: Russian Math. Surv., 73:2 (2018), 191–260.

    MathSciNet  MATH  Google Scholar 

  11. A. V. Shaposhnikov, “A note on Lusin-type approximation of Sobolev functions on Gaussian spaces”, J. Funct. Anal., 280:6 (2021).

    Article  MathSciNet  Google Scholar 

  12. V. I. Averbuh, O. G. Smolyanov, and S. V. Fomin, “Generalized functions and differential equations in linear spaces.”, Trudy Moskovsk. Matem. Obshch., 24 (1971), 133–174; English transl.: Trans. Moscow Math. Soc., 24 (1971), 140–184.

    MathSciNet  Google Scholar 

  13. V. I. Bogachev and O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Uspekhi Mat. Nauk, 45:3 (1990), 3–83; English transl.: Russian Math. Surveys, 45:3 (1990), 1–104.

    MathSciNet  MATH  Google Scholar 

  14. V. I. Bogachev, Measure Theory, vol. 2, Springer, New York, 2007.

    Book  Google Scholar 

  15. A. Lunardi, M. Miranda, and D. Pallara, “BV functions on convex domains in Wiener spaces”, Potential Anal., 43:1 (2015), 23–48.

    Article  MathSciNet  Google Scholar 

  16. V. I. Bogachev, A. Yu. Pilipenko, and A. V. Shaposhnikov, “Sobolev functions on infinite-dimensional domains”, J. Math. Anal. Appl., 419:2 (2014), 1023–1044.

    Article  MathSciNet  Google Scholar 

  17. D. Addona, G. Menegatti, and M. Miranda, “BV functions on open domains: the Wiener case and a Fomin differentiable case”, Commun. Pure Appl. Anal., 19:5 (2020), 2679–2711.

    Article  MathSciNet  Google Scholar 

  18. I. M. Gel’fand, “Some questions of analysis and differential equations”, Uspekhi Mat. Nauk, 14:3 (1959), 3–19; English transl.: Amer. Math. Soc. Transl., 26:2 (1963), 201–219.

    MathSciNet  Google Scholar 

  19. M. P. Kats, “Quasi-invariance and differentiability of measures”, Uspekhi Mat. Nauk, 33:3 (1978), 175; English transl.: Russian Math. Surv., 33:3 (1978), 159.

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to E. D. Kosov, S. N. Popova, and A. V. Shaposhnikov for useful discussions.

Funding

This research is supported by the Saint Tiknon’s Orthodox University and the Foundation “Living tradition,” by the Russian Foundation for Basic Research, Grant 20-01-00432, and by Moscow Center of Fundamental and Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2022, Vol. 56, pp. 10–28 https://doi.org/10.4213/faa3988.

Dedicated to the memory of Oleg Georgievich Smolyanov

Translated by V. I. Bogachev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I. Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes. Funct Anal Its Appl 56, 86–100 (2022). https://doi.org/10.1134/S0016266322020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266322020022

Keywords

Navigation