Skip to main content
Log in

Modal and Non-Modal Stability of the Heated Flat-Plate Boundary Layer with Temperature-Dependent Viscosity

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a modal and non-modal stability analysis of the boundary layer developed on a hot plate. A liquid-type temperature-dependent viscosity model has been considered to account for the viscosity variation in the boundary layer region. The base flow is uniform and parallel to the surface at the leading edge. The base flow solution is obtained using an open-source finite volume source code. The Reynolds number (Re) is defined based on the displacement thickness (δ*) at the inlet of the computation domain. The spectral collocation method is used for spatial discretization of governing stability equations. The formulated generalized eigenvalue problem (EVP) is solved using Arnoldi’s iterative algorithm with the shift and invert strategy. The global temporal eigenmodes are calculated for the sensitivity parameter β from 1 to 7, Re = 135, 270, and 405, and the span wise wave-number N from 0 to 1. The modal and non-modal stability analysis have been performed to study the least stable eigenmodes and the optimal initial conditions and perturbations (using mode superposition), respectively. The global temporal eigenmodes are found more stable for β > 0 at a given value of N. Thus, heating the boundary layer within the considered range of β (0 < β ≤ 7) leads to the stabilization of flow. The optimal energy growth increases with the β due to reducing the perturbation energy loss. Tilted elongated structures of the optimal perturbations are found near the outflow boundary. However, the length scale of the elongated cellular mode structure reduces with increase in β. The same qualitative structure of the optimal perturbations has been found at a given value of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Tollmien, W., Über die Entstehung der Turbullenz. 1. Mitteilung, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1929, vol. 1929, pp. 21–44.

    Google Scholar 

  2. Schlichting, H., Laminare strahlausbreitung, Z. Angew. Math. Mech., 1933, vol. 13, no. 4, pp. 260–263.

    Article  MATH  Google Scholar 

  3. Schubauer, G.B. and Skramstad, H.K., Laminar boundary-layer oscillations and stability of laminar flow, J. Aeronaut. Sci., 1947, vol. 14, no. 2, pp. 69–78.

    Article  Google Scholar 

  4. Jordinson, R., The flat plate boundary layer. Part 1. Numerical integration of the Orr–Sommerfeld equation, J. Fluid Mech., 1970, vol. 43, no. 4, pp. 801–811.

    Article  MATH  ADS  Google Scholar 

  5. Ross, J.A., Barnes, F.H., Burns, J.G., and Ross, M.A., The flat plate boundary layer. Part 3. Comparison of theory with experiment, J. Fluid Mech., 1970, vol. 43, no. 4, pp. 819–832.

    Article  MATH  ADS  Google Scholar 

  6. Gaster, M., On the effects of boundary-layer growth on flow stability, J. Fluid Mech., 1974, vol. 66, no. 3, pp. 465–480.

    Article  MATH  ADS  Google Scholar 

  7. Smith, F.T., On the non-parallel flow stability of the Blasius boundary layer, Proc. R. Soc. London, Ser. A, 1979, vol. 366, pp. 91–109.

    Article  MATH  ADS  Google Scholar 

  8. Fasel, H. and Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations, J. Fluid Mech., 1990, vol. 221, pp. 311–347.

    Article  MATH  ADS  Google Scholar 

  9. Miller, R., Garrett, S.J., Griffiths, P.T., and Hussain, Z., Stability of the Blasius boundary layer over a heated plate in a temperature-dependent viscosity flow, Phys. Rev. Fluids, 2018, vol. 3, no. 113902, pp. 1–23.

    Article  Google Scholar 

  10. Bertolotti, F.P., Herbert, Th., and Spalart, P.R., Linear and nonlinear stability of the Blasius boundary layer, J. Fluid Mech., 1992, vol. 242, pp. 441–474.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Akervik, E., Ehrenstein, U., Gallaire, F., and Henningson, D.S., Global two-dimensional stability measure of the flat plate boundary-layer flow, Eur. J. Mech.-B/Fluids, 2008, vol. 27, no. 5, pp. 501–513.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Ehrenstein, U. and Gallaire, F., On two-dimensional temporal modes in spatially evolving open flow: the flat-plate boundary layer, J. Fluid Mech., 2005, vol. 536, pp. 209–2018.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Alizard, F. and Robinet, J., Spatially convective global modes in a boundary layer, Phys. Fluids, 2007, vol. 19, no. 11, pp. 1–12.

    Article  MATH  Google Scholar 

  14. Yih, C.S., Instability due to viscosity stratification, J. Fluid Mech., 1967, vol. 27, no. 2, pp. 337–352.

    Article  MATH  ADS  Google Scholar 

  15. Govindarajan, R., Effect of miscibility on the linear instability of two-fluid channel flow, Int. J. Multiphase Flow, 2004, vol. 30, no. 10, pp. 1177–1192.

    Article  MATH  Google Scholar 

  16. Barker, S. and Gile, D., Experiments on heat-stabilized laminar boundary layers in water, J. Fluid Mech., 1981, vol. 104, pp. 139–158.

    Article  ADS  Google Scholar 

  17. Govindarajan, R. and Sahu, K.C., Instabilities in viscosity-stratified flow, Annu. Rev. Fluid Mech., 2014, vol. 46, pp. 331–353.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Wazzan, J.A., Okamura, T., and Smith, A.M.O., The stability of water flow over heated and cooled flat plates, J. Heat Transfer, 1968, vol. 90, no. 1, pp. 109–114.

    Article  Google Scholar 

  19. Wazzan, A.R., Keltner, G., Okamura, T.T., and Smith, A.M.O., Spatial stability of stagnation water boundary layer with heat transfer, Phys. Fluids, 1972, vol. 15, no. 12, pp. 2114–2118.

    Article  ADS  Google Scholar 

  20. Herwig, H. and Schafer, P., Influence of variable properties on the stability of two-dimensional boundary layers, J. Fluid Mech., 1992, vol. 243, pp. 1–14.

    Article  MATH  ADS  Google Scholar 

  21. Strazisar, A.J., Reshotko, E., and Prahl, J.M., Experimental study of the stability of heated laminar boundary layers in water, J. Fluid Mech., 1997, vol. 83, no. 2, pp. 225–247.

    Article  ADS  Google Scholar 

  22. Gazley, C. and Wazzan, A.R., Control of water boundary layer stability and transition by surface temperature distribution, in Laminar-Turbulent Transition, Kozlov, V.V., Ed., Berlin, Heidelberg: Springer, 1985, pp. 153–162.

    Google Scholar 

  23. Wall, D.P. and Wilson, S.K., The linear stability of flat-plate boundary-layer flow of fluid with temperature-dependent viscosity, Phys. Fluids, 1997, vol. 9, no. 10, pp. 2885–2898.

    Article  ADS  Google Scholar 

  24. Boronin, S.A. and Osiptsov, A.N., Modal and non-modal stability of dusty-gas boundary layer flow, Fluid Dyn., 2014, vol. 49, no. 6, pp. 770–782.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Boronin, S.A., Optimal disturbances of a dusty-gas plane-channel flow with a nonuniform distribution of particles, Fluid Dyn., 2012, vol. 47, no. 3, pp. 351–363.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Winter, H.H., Viscous Dissipation Term in Energy Equation (Module C7.4), American Institute of Chemical Engineers, Univ. of Massachusetts, 1987.

    Google Scholar 

  27. Ozgen S., Effect of heat transfer on stability and transition characteristics of boundary-layers, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 22, pp. 4697–4712.

    Article  MATH  Google Scholar 

  28. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, Wiley, 2006.

    Google Scholar 

  29. Lee, J., Jung, S.Y., Sung, H.J., and Zaki, T.A., Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity, J. Fluid Mech., 2013, vol. 726, pp. 196–225.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Wall, D.P. and Wilson, S.K., The linear stability of channel flow of fluid with temperature-dependent viscosity, J. Fluid Mech., 1996, vol. 323, pp. 107–132.

    Article  MATH  ADS  Google Scholar 

  31. Fasel, H.F., Rist, U., and Konzelmann, U., Numerical investigation of the three-dimensional development in boundary layer transition, AIAA J., 1990, vol. 28, no. 1, pp. 29–37.

    Article  MathSciNet  ADS  Google Scholar 

  32. Swaminathan, G. and Sahu, K.G., Global instabilities in diverging channel flows, Theor. Comput. Fluid Dyn., 2011, vol. 25, pp. 53–64.

    Article  MATH  Google Scholar 

  33. Theofilis, V., Advances in global linear instability analysis of non-parallel and three-dimensional flows, Prog. Aerosp. Sci., 2003, vol. 39, no. 4, pp. 249–315.

    Article  Google Scholar 

  34. Bhoraniya, R. and Narayanan, V., Global stability analysis of axisymmetric boundary layer over a circular cylinder, Theor. Comput. Fluid Dyn., 2018, vol. 32, no. 3, pp. 425–449.

    Article  MathSciNet  Google Scholar 

  35. Bhoraniya, R., Hussain, Z., and Narayanan, V., Global stability analysis of axisymmetric boundary layer on a slender circular cone with streamwise adverse pressure gradient, Eur. J. Mech.-B/Fluids, 2021, vol. 87, no. 6, pp. 113–127.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Bhoraniya, R. and Narayanan, V., Global stability analysis of spatially developing boundary layer: Effect of streamwise adverse pressure gradients, Fluid Dyn., 2019, vol. 54, no. 6, pp. 821–834.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Rempfer, D., On boundary conditions for incompressible Navier-Stokes problems, Appl. Mech. Rev., 2016, vol. 59, no. 3, pp. 107–125.

    Article  ADS  Google Scholar 

  38. Theofilis, V., The linearized pressure Poisson equation for global stability analysis of incompressible flow, Theor. Comput. Fluid Dyn., 2017, vol. 31, pp. 623–642.

    Article  Google Scholar 

  39. Malik, M.R., Numerical methods for hypersonic boundary layer stability, J. Comput. Phys., 1990, vol. 86, no. 2, pp. 376–413.

    Article  MATH  ADS  Google Scholar 

  40. Costa, B., Don, W., and Simas, A., Spatial resolution properties of mapped spectral Chebyshev methods, Proc. SCPDE: Recent Progress in Scientific Computing, 2007, pp. 1–9.

  41. Sameen, A. and Govindrajan, R., The effect of wall heating on stability of channel flow, J. Fluid Mech., 2007, vol. 577, pp. 417–442.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Hanifi, A., Schmid P.J., and Henningson D.S., Transient growth in compressible boundary layer, Phys. Fluids, 1996, vol. 8, no. 3, pp. 826–837.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Schmid, P.J. and Henningson, D.S., Stability and Transition in Shear Flows, New York: Springer, 2001.

    Book  MATH  Google Scholar 

  44. Greenshields, C., OpenFOAM v10 User Guide, London: The OpenFOAM Foundation, 2022.

  45. Roache, P.J., Perspective: A method for uniform reporting of grid refinement studies, J. Fluids Eng., 1994, vol. 116, no. 3, pp. 405–413.

    Article  Google Scholar 

  46. Butler, K.M. and Farrell, B.F., Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 1992, vol. 4, no. 8, pp. 1637–1650.

    Article  ADS  Google Scholar 

  47. Quintanilha, H., Paredes, P., Hanifi, H., and Theofillis, V., Transient growth analysis of hypersonic flow over an elliptical cone, J. Fluid Mech., 2022, vol. 935, no. A40, pp. 1–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the supercomputing facility of Marwadi University, established by the Gujarat Council of Science and Technology (GUJCOST), for availing it for base flow computations and the Science and Engineering Research Board (SERB) for availing computing facility established under the research grant CRG/2020/005698 for stability computations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Thummar, R. Bhoraniya or V. Narayanan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thummar, M., Bhoraniya, R. & Narayanan, V. Modal and Non-Modal Stability of the Heated Flat-Plate Boundary Layer with Temperature-Dependent Viscosity. Fluid Dyn 58, 450–475 (2023). https://doi.org/10.1134/S0015462822601632

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601632

Keywords:

Navigation