Skip to main content
Log in

Falling of a Spherical Particle in Fine-Bubble Plume and Fine-Bubble Behavior around the Particle

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

In this study, the interaction between a spherical solid particle descending in a fine-bubble plume and the fine-bubbles around the particle is investigated experimentally. The fine-bubbles, which are formed by water electrolysis and have an average diameter of 0.037 mm, rise via buoyancy to form bubble plumes. The average bubble velocity in the conduit is 0.05 mm/s. A spherical solid particle with a diameter of 11.1 mm and a density of 1130 kg/m3 is dropped into the fully-developed bubble plume. The particle falls in a meandering motion in the fine-bubble plume. In this process, the terminal velocity of the particles falling in the fine-bubble plume is almost identical to that of a particle falling in the quiescent water. Additionally, after the fine-bubbles have been separated from the particle surface, they flow into the wake of the particle, forming a stagnant region. The particle wake diameter increases threefold, as compared with its value in the downstream direction of the fine-bubble plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Q. Yang, B. Du, and L-S. Fan, “Bubble formation and dynamics in gas-liquid-solid fluidization–A review,” Chem. Eng. Sci. 62, 2–27 (2007).

    Article  Google Scholar 

  2. W-J. Lu, S-J. Hwang, and C.M. Chang, “Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles,” Chem. Eng. Sci. 50(8), 1301–1310 (1995).

    Article  Google Scholar 

  3. K. Tsuchiya, A. Furumoto, L-S. Fan, and J. Zhang, “Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds,” Chem. Eng. Sci. 52(18), 3053–3066 (1997).

    Article  Google Scholar 

  4. K. Tsuchiya and A. Furumoto, “Tortuosity of bubble rise path in a liquid-solid fluidized bed: Effect of particle shape,” AIChE J. 41(6), 1368–1374 (1995).

    Article  Google Scholar 

  5. A. B. Pandit and J. B. Joshi, “Effect of physical properties on the suspensionof solid particles in three-phase sparged reactors, " Int. J. Multiphase Flow 13(3), 415–427 (1987).

    Article  Google Scholar 

  6. C. David and L-S. Fan, “Solid-liquid mass transfer in a gas-liquid fluidized bed,” Chem. Eng. Sci. 41, 107 (1986).

    Article  Google Scholar 

  7. T. Yoshinaga and Y. Sato, “Performance of an air-lift pump for conveying coarse particles,” Int. J. Multiphase Flow 22(2), 223–238 (1996).

    Article  Google Scholar 

  8. H. Fujimoto, S. Ogawa, H. Takuda, and N. Hatta, “Operation performance of a small air-lift pump for conveying solid particles,” Trans. ASME, J. Energy Resources Tech. 125(1), 17–25 (2003).

    Article  Google Scholar 

  9. S. Z. Kassab, H. A. Kandil, H. A. Warda, and W. H. Ahmed, “Experimental and analytical investigations of airlift pumps operating in three-phase flow,” Chem. Eng. Sci. 131(1–3), 273–281 (2007).

  10. Y. Zhang, F. Chen, Y. Zhang, and X. Du, “Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle,” Exp. Therm. Fluid Sci. 98, 645–661 (2018).

    Article  Google Scholar 

  11. Y. Zhang, X. Xie, Y. Zhang, and X. Du, “Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall,” Exp. Therm. Fluid Sci. 105, 289–306 (2019).

    Article  Google Scholar 

  12. M. W. Baltussen, L. J. H. Seelen, J. A. M. Kuipers, and N. G. Deen, “Direct numerical simulation of gas-liquid-solid three phase flows,” Chem. Eng. Sci. 100, 293–299 (2013).

    Article  Google Scholar 

  13. Y. Li, J. Zhang, and L-S. Fan, “Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: Bubble wake behavior,” Chem. Eng. Sci. 54(21), 5101–5107 (1999).

    Article  Google Scholar 

  14. O. A. Abramov, S. I. Akhatov, N. A. Gumerov, Y. A. Pityuk, and S. P. Sametov, “Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers”, Fluid Dynamics 53(3), 337–346 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. S. Kozelkov, A. A. Kurkin, V. V. Kurulin, S. V. Lashkin, N. V. Tarasova, and E. S. Tyatyushkina, “Numerical modeling of the free rise of an air bubble,” Fluid Dynamics 51(6), 709–721 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. A. Vorobyev, O. N. Kashinsky, and V. V. Randin, “Downward bubbly flow in a pipe at subcritical Reynolds numbers,” Fluid Dynamics 54(2), 264–269 (2019).

    Article  ADS  Google Scholar 

  17. V. A. Arkhipov, I. M. Vasenin, A. S. Tkachenko, and A. S. Usanina, “Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers,” Fluid Dynamics 50(1), 79–86 (2015).

    Article  ADS  Google Scholar 

  18. J. Rodríguez-Rodríguez, A. Sevilla, C. Martínez-Bazán, and J. M. Gordillo, “Generation of fine-bubbles with applications to industry and medicine,” Annual Review of Fluid Mech. 47, 405–429 (2015).

    Article  ADS  Google Scholar 

  19. A. Rahman, A. K. Darban, A. Mahmoud, and F. Maoming, “Nano-fine-bubble flotation of fine and ultrafine chalcopyrite particles,” Int. J. Mining Sci. Technol. 24(4), 559–566 (2014).

    Article  Google Scholar 

  20. T. Temesgen, T. T. Bui, M. Han, T. Kim, and H. Park, “Fine- and nanobubble technologies as a new horizon for water-treatment techniques: A review,” Adv. Colloid and Interface Sci. 246, 40–51 (2017).

    Article  Google Scholar 

  21. K. Terasaka, S. Aoki, and D. Kobayashi, “Recovery of fine iron oxide particulates from waste water using fine-bubble flotation,” in: Proc. 19th Int. Symp. Transport Phenomena, Reykjavik, August 17—21, 2008 (2008).

  22. T. Uchiyama, Y. Kawasaki, T. Degawa, and K. Takamure, “Motion of a spherical particle in a fine-bubble plume and the behavior of fine-bubbles around the particle,” J. Mech. Eng. Sci., IMechE. 234(7), 1340–1350 (2020).

    Article  Google Scholar 

  23. C. Mimeau, G.-H. Cottet, and I. Mortazavi, “Direct numerical simulation of three-dimensional flows past obstacles with a vortex penalization method,” Computers Fluids, 136, 331 (2016).

    Article  MathSciNet  Google Scholar 

  24. R. L. C. Flemmer and C. L. Banks, “On the drag coefficient of a sphere,” Powder Technol. 48(3), 217–221 (1986).

    Article  Google Scholar 

  25. Z. L. Arsenijević, Z. B. Grbavčić, R. V. Garić-Grulović, and N. M. Bošković-Vragolović, “Wall effects on the velocities of a single sphere settling in a stagnant and counter-current fluid and rising in a co-current fluid,” Powder Technol. 203(2), 237–242 (2010).

    Article  Google Scholar 

  26. R. Turton and A. Levenspiel, “A short note on the drag correlation for spheres,” Powder Technol. 47(1), 83–86 (1986).

    Article  Google Scholar 

  27. B. R. Clayton and B. S. Massey, “Flow visualization in water: a review of techniques,” J. Sci. Instrum. 44(1), 2–11 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Takamure.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamure, K., Kawasaki, Y., Degawa, T. et al. Falling of a Spherical Particle in Fine-Bubble Plume and Fine-Bubble Behavior around the Particle. Fluid Dyn 56, 612–621 (2021). https://doi.org/10.1134/S001546282105013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282105013X

Keywords:

Navigation