Skip to main content
Log in

UNSTEADY TWO-PHASE GAS-PARTICLE FLOWS IN BLADE CASCADES

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

Unsteady flows of a gas with solid particles in a system of two plane “rotor–stator” cascades are investigated. The carrier-gas flow is modeled using the Navier–Stokes equations (pseudo DNS approach) and, for comparison, the Reynolds equations (URANS approach) with the Menter SST k–ω model of turbulence. In both cases, the equations are solved using a second-order finite- volume method. In the absence of particle collisions, the admixture motion is modeled using a Lagrangian approach and the colliding particles are modeled by the Monte Carlo method. The feedback effect of the particles on the carrier gas flow is taken into account. The influence of different factors of random nature (particle distribution over sizes, particle scattering after collisions with the blades, particle–particle collisions) on the admixture flow pattern and particle concentration profiles at the outlet of the stator cascade is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. G. De Giorgi, S. Campilongo, and A. Ficarella, “Predictions of Operational Degradation of the Fan Stage of an Aircraft Engine due to Particulate Ingestion,” J. Eng. Gas Turbines Power 137 (5), 052603 (2015). https://doi.org/10.1115/1.4028769

    Article  Google Scholar 

  2. C. R. Cosher and M. G. Dunn, “Comparison of the Sensitivity to Foreign Particle Ingestion of the GE-F101 and P/W-F100 Engines to Modern Aircraft Engines,” J. Eng. Gas Turbines Power 138 (12), 121201 (2016). https://doi.org/10.1115/1.4034021

    Article  Google Scholar 

  3. S. Saxena, G. Jothiprasad, C. Bourassa, and B. Pritchard, “Numerical Simulation of Particulates in Multistage Axial Compressors, J. Turbomach. March. 139 (3), 031013 (2017). https://doi.org/10.1115/1.4034982

  4. F. Döring, S. Staudacher, C. Koch, and M. Weißschuh, “Modeling Particle Deposition Effects in Aircraft Engine Compressors,” J. Turbomach. 139 (5), 051003 (2017). https://doi.org/10.1115/1.4035072

    Article  Google Scholar 

  5. A. Suman, M. Morini, R. Kurz R., et al., “Estimation of the Particle Deposition on a Subsonic Axial Compressor Blade,” J. Eng. Gas Turbines Power 139 (1), 012604 (2017). https://doi.org/10.1115/1.4034209

    Article  Google Scholar 

  6. M. G. Dunn, “Operation of Gas Turbine Engines in an Environment Contaminated with Volcanic Ash,” J. Turbomach. 134 (5), 051001 (2012). https://doi.org/10.1115/1.4006236

    Article  Google Scholar 

  7. A. N. Volkov and Yu. M. Tsirkunov, “Kinetic Model of a Collisional Admixture in Dusty Gas and Its Application to Calculating Flow Past Bodies,” Fluid Dynamics 35 (3), 380-392 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  8. A. N. Volkov, Y. M. Tsirkunov, and B. Oesterle, “Numerical Simulation of a Supersonic Gas-Solid Flow over a Blunt Body: the Role of Inter-Particle Collisions and Two-Way Coupling Effects,” Int. J. Multiphase Flow 31 (12), 1244–1275 (2005). https://doi.org/10.1016/j.ijmultiphaseflow.2005.07.002

    Article  MATH  Google Scholar 

  9. S. V. Panfilov and Yu. M. Tsirkunov, “Scattering of Nonspherical Particles Rebounding from a Smooth and a Rough Surface in a High-Speed Gas-Particle Flow,” J. Appl. Mech. Techn. Phys. 49 (2), 222–230 (2008).

    ADS  MATH  Google Scholar 

  10. A. S. Zotikov and V. A. Lashkov, “Restitution Coefficient of Velocity at Impact of Absolutely Elastic Particle with Shape of an Ellipsoid of Revolution,” Vestnik SPb University. Ser. 1 (59), V. 2, 245–253 (2014) [in Russian].

    Google Scholar 

  11. B. Q. Arboleda, Z. Qadir, M. Sommerfeld, and S. L. Beatove, “Modelling the Wall Collisions of Regular Non-Spherical Particles and Experimental Validation,” Proc. of the ASME, FEDSM’2014. 2014. Paper no. 21610. https://doi.org/10.1115/FEDSM2014-21610

  12. G. V. Molleson and A. L Stasenko, “Peculiarities of Flow over a Blunted Body by a Supersonic Polydispersed Jet with a Swirl of Reflected Particles,” High Temperature 49 (1), 72–80 (2011).

  13. L. D. Reviznikov, A. V. Sposobin, and T. Yu. Sukharev, “Numerical Simulation of the Flow around a Blunt Body in Supersonic Polydisperse Stream,” High Temperature 55 (3), 400–406 (2017).

    Google Scholar 

  14. G. Yu. Stepanov, Hydrodynamics of Turbomachinery Cascades, (Fizmatlitm Moscow, 1962) (in Russian).

    Google Scholar 

  15. J. P. Gostelow, Cascade Aerodynamics (Pergamon, Oxford, 1984).

    Google Scholar 

  16. Yu. M. Tsirkunov, “Gas-Particle Flows around Bodies – Key Problems, Modeling and Numerical Analysis,” in: Proc. 4th Int. Conf. Multiphase Flow (Ed. E. Michaelides), Paper 607 (2001).

  17. D.A. Lyubimov, “Analysis of Turbulent Jet and Separated Flows in SFJE Units Using High-Resolution Combined RANS/LES Methods,” Diss. Dr. Sci. M. Keldysh Inst. Appl. Mathem. RAS (2014). [In Russian].

  18. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal 32 (8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  ADS  Google Scholar 

  19. F. R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” in: Proc. 4th Int. Symp. Turbulence, Heat and Mass Transfer (eds.: K. Hanjalic, Y. Nagano, and M. Tummers) (Begell House Inc., West Redding, 2003), pp. 625–632.

  20. A. Hölzer and M. Sommerfeld, “New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles,” Powder Technol. 184 (3), 361–365 (2008). https://doi.org/10.1016/j.powtec.2007.08.021

    Article  Google Scholar 

  21. C. T. Crowe, M. Sommerfeld, and Yu. Tsuji, Multiphase Flow with Droplets and Particles (Boca Raton: CRC Press, 1998).

    Google Scholar 

  22. Ch. B. Henderson, “Drag Coefficient of Spheres in Continuum and Rarefied Flows,” AIAA Journal 14 (6), 707–708 (1976). https://doi.org/10.2514/3.61409

    Article  ADS  Google Scholar 

  23. S. I. Rubinow and J. B. Keller, “The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid,” J. Fluid Mech. 11 (3), 447–459 (1961). https://doi.org/10.1017/S0022112061000640

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. B. Oesterlé and T. Bui Dinh, “Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers,” Experim. in Fluids 25, 16–22 (1998). https://doi.org/10.1007/s003480050203

    Article  ADS  Google Scholar 

  25. S. R. C. Dennis, S. N. Singh, and D. B. Ingham, “The Steady Flow due to a Rotating Sphere at Low and Moderate Reynolds Numbers,” J. Fluid Mech. 101 (2), 257–279 (1980). https://doi.org/10.1017/S0022112080001656

    Article  ADS  MATH  Google Scholar 

  26. V. A. Lashkov, “Experimental Determination of the Coefficients of Restitution of Particles in the Flow of Gas Suspension in a Collision against a Surface,” J. Eng. Phys. 60 (2), 154–159 (1991).

    Google Scholar 

  27. Yu. M. Tsirkunov, S. V. Panfilov, and M. B. Klychnikov, “Semiempirical Model of Impact Interaction of a Dispersed Impurity Particle with a Surface Immersed in Gas-Suspension Flow,” J. Eng. Phys. Thermophys. 67 (5–6), 1018–1025 (1994).

    Google Scholar 

  28. P. L. Roe, “Approximate Riemann Solvers, Parameter Vector and Difference Schemes,” J. Comp. Phys. 101 (2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A. N. Volkov and Yu. M. Tsirkunov, “CFD/Monte Carlo Simulation of Collision-Dominated Gas-Particle Flows over Bodies,” in: Proc. of ASME, FEDSM’2002, Paper 31222 (2002). 14 p. https://doi.org/10.1115/FEDSM2002-31222.

Download references

Funding

The work received partial financial support from RFBR (project no. 20-08-00711).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Romanyuk or Yu. M. Tsirkunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanyuk, D.A., Tsirkunov, Y.M. UNSTEADY TWO-PHASE GAS-PARTICLE FLOWS IN BLADE CASCADES. Fluid Dyn 55, 609–620 (2020). https://doi.org/10.1134/S0015462820050122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820050122

Key words:

Navigation