Skip to main content
Log in

New Instability of a Thin Vortex Ring in an Ideal Fluid

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—The problem of stability of steady-state thin vortex ring flow in an ideal fluid is studied in the linear approximation. The case of the isochronous vortex ring in which the liquid-particle rotation periods are identical is considered. In such a flow there are no perturbations of the continuous spectrum. This makes considerably easier to solve this complex problem. The instability of longwave oscillations related to the interaction between the perturbations with energy of different signs, namely, the oscillations with positive and negative energy, is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fraenkel, L.E., On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. Lond. A, 1970, vol. 316, pp. 29–62.

    ADS  MATH  Google Scholar 

  2. Fraenkel, L.E., Examples of steady vortex rings of small cross-section in an ideal fluid, J. Fluid Mech., 1972, vol. 2, no. 1, pp. 119–135.

    Article  ADS  Google Scholar 

  3. Akinshin, R.V., Kopiev, V.F., Chernyshev, S.A., and Yudin, M.A., Steady vortex ring with isochronous flow in the vortex core, Fluid Dynamics, 2018, vol. 53, no. 2, pp. 222–233.

    Article  MathSciNet  Google Scholar 

  4. Widnall, S.E. and Tsai, S.Y., Philos. Trans. R. Soc. London Ser. A, 1977, vol. 287 (1344), p. 273.

    Article  ADS  Google Scholar 

  5. Fukumoto, Y. and Hattori, Y., Curvature instability of a vortex ring, J. Fluid Mech., 2005, vol. 526, pp. 77–115.

    Article  ADS  MathSciNet  Google Scholar 

  6. Kopiev, V.F. and Chernyshev, S.A., Vortex ring eigen-oscillations as a source of sound, J. Fluid Mech., 1997, vol. 341, pp. 19–47.

    Article  ADS  MathSciNet  Google Scholar 

  7. Kopiev, V.F. and Chernyshev, S.A., Vortex ring oscillations, the development of turbulence in vortex rings and generation of sound, Usp. Fiz. Nauk, 2000, vol. 170, no. 7, pp. 713–742.

    Article  Google Scholar 

  8. Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1992.

    MATH  Google Scholar 

  9. Drazin, P.G. and Raid, W.H., Hydrodynamics Stability,Second Ed., Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  10. Arnold, V.I., Condition of nonlinear stability of plane steady-state curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR, 1965, vol. 162, no. 5, pp. 975–978.

    MathSciNet  Google Scholar 

  11. Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 1970; Moscow: Mir, 1973.

  12. Akinshin, R.V., Kopiev, V.F., Chernyshev, S.A., and Yudin, M.A., Basic displacements in the problem of core disturbances of a thin isochronous vortex ring, Fluid Dynamics, 2018, vol. 53, no.5, pp. 630–641.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is deeply indebted to V.F. Kopiev and S.A. Chernyshev for formulation of the problem and constant attention to the results of investigation.

Funding

The work was supported by the Russian Science Foundation, project no. 17–11–01271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Akinshin.

Additional information

Translated by E.A. Pushkar

Appendices

APPENDIX A

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 1 \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( 1 \right)}}^{\sigma } = i\left( {\left( { - \mu \frac{{a\omega {\kern 1pt} '}}{{n\sigma }} + {{\mu }^{3}}\left( {\frac{{\omega {\kern 1pt} '\left( {96{{a}^{2}}\omega {\kern 1pt} '\; + 107{{\sigma }^{2}}} \right)}}{{96an\sigma }}} \right)} \right){{J}_{1}}\left( {{{a}_{0}}} \right)} \right. \\ \, - \left. {\left( {{{\mu }^{2}}\omega {\kern 1pt} '\; + {{\mu }^{4}}\frac{1}{{192}}\omega {\kern 1pt} '\left( {\frac{{252\omega {\kern 1pt} '}}{{{{n}^{2}}}} + \frac{{125{{\sigma }^{2}}}}{{{{a}^{2}}}}} \right)} \right){{J}_{2}}\left( {{{a}_{0}}} \right)} \right){{e}^{{i1\psi }}} \\ \, + i\left( {{{\mu }^{4}}\frac{{{{\omega }^{{'2}}}}}{n}{{J}_{1}}\left( {{{a}_{0}}} \right) + {{\mu }^{5}}\left( { - \frac{{10a{{\omega }^{{'3}}}}}{{{{n}^{2}}\sigma }} + \frac{{2{{\omega }^{{'2}}}\sigma }}{a}} \right){{J}_{2}}\left( {{{a}_{0}}} \right)} \right){{e}^{{i2\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, - {{\mu }^{5}}i\frac{{3{{\omega }^{{'2}}}}}{{64an\sigma }}\left( { - 15{{a}^{2}} - 16{{\sigma }^{2}} + 24{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i3\psi }}} \\ \, - {{\mu }^{5}}\frac{{2i{{\omega }^{{'2}}}\sigma }}{a}{{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i0\psi }}} - {{\mu }^{5}}\frac{{i{{\omega }^{{'2}}}}}{{64an\sigma }}\left( { - 15{{a}^{2}} - 16{{\sigma }^{2}} + 24{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{ - i\psi }}} + O({{\mu }^{5}}){{e}^{{i\psi }}} + O({{\mu }^{6}}), \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 1 \right)}}^{\psi } = \left( { - \frac{1}{\sigma } + {{\mu }^{2}}\frac{1}{{192\sigma }}\left( { - \frac{{252\omega {\kern 1pt} '}}{{{{n}^{2}}}} - \frac{{275{{\sigma }^{2}}}}{{{{a}^{2}}}}} \right) + {{\mu }^{4}}\frac{\sigma }{{1024{{a}^{2}}{{n}^{2}}}}( - 3021\omega {\kern 1pt} '\; - 1385{{n}^{2}})} \right){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i1\psi }}} \\ \, - {{\mu }^{4}}\frac{1}{{368\,640{{a}^{4}}{{n}^{4}}\sigma }}(1\,809\,487{{n}^{4}}{{\sigma }^{4}} + 720{{a}^{4}}\omega {\kern 1pt} '( - 441\omega {\kern 1pt} '\; + 16{{n}^{2}}(45 + 76\omega {\kern 1pt} '\; + 16{{n}^{2}}\omega {\kern 1pt} '))){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i1\psi }}} \\ \, + {{\mu }^{4}}\frac{1}{{128{{a}^{4}}{{n}^{4}}\sigma }}(288{{a}^{4}}{{n}^{2}}\omega {\kern 1pt} '\; + 277{{a}^{2}}{{n}^{4}}{{\sigma }^{2}})\ln \frac{8}{\mu }{{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i1\psi }}} + \left( {{{\mu }^{3}}\frac{{\omega {\kern 1pt} '}}{{2a}}{{J}_{2}}\left( {{{a}_{0}}} \right) + {{\mu }^{4}}\frac{{4{{\omega }^{{'2}}}}}{{n\sigma }}{{J}_{1}}\left( {{{a}_{0}}} \right)} \right){{e}^{{i2\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + {{\mu }^{5}}\frac{{\omega {\kern 1pt} '}}{{192{{a}^{3}}{{n}^{2}}{{\sigma }^{2}}}}( - 1920{{a}^{4}}{{\omega }^{{'2}}} + 331{{n}^{2}}{{\sigma }^{4}} - 9{{a}^{2}}{{\sigma }^{2}}( - 14\omega {\kern 1pt} '\; + {{n}^{2}}\left( { - 15 + 32\omega {\kern 1pt} '} \right))){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i2\psi }}} \\ \, - {{\mu }^{5}}\frac{{9\omega {\kern 1pt} '}}{{8a}}\ln \frac{8}{\mu }{{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i2\psi }}} + {{\mu }^{4}}\frac{{\omega {\kern 1pt} '}}{{64{{a}^{2}}\sigma }}\left( {16{{\sigma }^{2}} + 15{{a}^{2}} - 24{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i3\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + {{\mu }^{5}}\frac{{{{\omega }^{{'2}}}}}{{64an{{\sigma }^{2}}}}\left( {176{{\sigma }^{2}} + 45{{a}^{2}} - 72{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i3\psi }}} \\ \, - {{\mu }^{5}}\frac{{\omega {\kern 1pt} '}}{{768{{a}^{3}}}}\left( { - 141{{a}^{2}} - 116{{\sigma }^{2}} + 168{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i4\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + \left( {{{\mu }^{3}}\frac{{\omega {\kern 1pt} '}}{{2a}}{{J}_{2}}\left( {{{a}_{0}}} \right) + {{\mu }^{4}}\frac{{2{{\omega }^{{'2}}}}}{{n\sigma }}{{J}_{1}}\left( {{{a}_{0}}} \right)} \right){{e}^{{i0\psi }}} \\ \, - {{\mu }^{5}}\frac{{\omega {\kern 1pt} '}}{{192{{a}^{3}}{{n}^{2}}}}\left( {9{{a}^{2}}(14\omega {\kern 1pt} '\; + {{n}^{2}}\left( {15 + 32\omega {\kern 1pt} '} \right)) + 331{{n}^{2}}{{\sigma }^{2}} - 216{{a}^{2}}{{n}^{2}}\ln \frac{8}{\mu }} \right){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{i0\psi }}} \\ {\text{ }} \\ \end{gathered} $$
$$\begin{gathered} \, + \left( {{{\mu }^{4}}\frac{{\omega {\kern 1pt} '}}{{64{{a}^{2}}\sigma }}\left( { - 15{{a}^{2}} - 16{{\sigma }^{2}} + 24{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{2}}\left( {{{a}_{0}}} \right)} \right. \\ \, + \left. {{{\mu }^{5}}\frac{{{{\omega }^{{'2}}}}}{{64an{{\sigma }^{2}}}}\left( {15{{a}^{2}} + 16{{\sigma }^{2}} - 24{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{1}}\left( {{{a}_{0}}} \right)} \right){{e}^{{ - i\psi }}} \\ \, + {{\mu }^{5}}\frac{{\omega {\kern 1pt} '}}{{768{{a}^{3}}}}\left( { - 141{{a}^{2}} - 116{{\sigma }^{2}} + 168{{a}^{2}}\ln \frac{8}{\mu }} \right){{J}_{2}}\left( {{{a}_{0}}} \right){{e}^{{ - i2\psi }}} + O({{\mu }^{5}}){{e}^{{i1\psi }}} + O({{\mu }^{6}}), \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 1 \right)}}^{s} = \left( {1 + {{\mu }^{2}}\frac{{307{{\sigma }^{2}}}}{{96{{a}^{2}}}} + {{\mu }^{4}}\frac{{{{\sigma }^{2}}}}{{92\,160{{a}^{4}}{{n}^{2}}}}} \right. \\ \, \times \left. {\left( {1\,192\,213{{n}^{2}}{{\sigma }^{2}} - 180{{a}^{2}}\left( {274\omega {\kern 1pt} '\; + 239{{n}^{2}}\left( { - 5 + 8\ln \frac{8}{\mu }} \right)} \right)} \right)} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i1\psi }}} \\ \, - \left( {{{\mu }^{3}}\frac{{2\omega {\kern 1pt} '\sigma }}{a} + {{\mu }^{5}}\frac{{\omega {\kern 1pt} '\sigma }}{{96{{a}^{3}}}}\left( {833{{\sigma }^{2}} + 9{{a}^{2}}\left( {5 + 16\omega {\kern 1pt} '\; - 8\ln \frac{8}{\mu }} \right)} \right)} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i2\psi }}} - {{\mu }^{4}}\frac{{5\omega {\kern 1pt} '{{\sigma }^{2}}}}{{8{{a}^{2}}}}{{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i3\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, - {{\mu }^{5}}\frac{{11\omega {\kern 1pt} '{{\sigma }^{3}}}}{{48{{a}^{3}}}}{{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i4\psi }}} + \left( {{{\mu }^{3}}\frac{{2\omega {\kern 1pt} '\sigma }}{a} + {{\mu }^{5}}\frac{{\omega {\kern 1pt} '\sigma }}{{96{{a}^{3}}}}\left( {833{{\sigma }^{2}} - 9{{a}^{2}}\left( { - 5 + 16\omega {\kern 1pt} '\; + 8\ln \frac{8}{\mu }} \right)} \right)} \right){{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{i0\psi }}} \\ \, + {{\mu }^{4}}\frac{{5\omega {\kern 1pt} '{{\sigma }^{2}}}}{{8{{a}^{2}}}}{{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{ - i\psi }}} + {{\mu }^{5}}\frac{{11\omega {\kern 1pt} '{{\sigma }^{3}}}}{{48{{a}^{3}}}}{{J}_{1}}\left( {{{a}_{0}}} \right){{e}^{{ - i2\psi }}} + O({{\mu }^{6}}), \\ \end{gathered} $$
$$\begin{gathered} {{a}_{0}} = \frac{{n\sigma }}{{a\omega {\kern 1pt} '\mu }}\left( {1 + {{\mu }^{2}}\left( {\frac{{21\omega {\kern 1pt} '}}{{16{{n}^{2}}}} + \frac{{163{{\sigma }^{2}}}}{{192{{a}^{2}}}}} \right) + {{\mu }^{4}}X + O({{\mu }^{6}})} \right), \\ X = \frac{1}{{40\,960{{a}^{4}}{{n}^{4}}}}(82\,611{{n}^{4}}{{\sigma }^{4}} + 40{{a}^{2}}{{n}^{2}}{{\sigma }^{2}}(1689\omega {\kern 1pt} '\; + 745{{n}^{2}}) - 20{{a}^{4}}(1764{{\omega }^{{'2}}} - 64{{n}^{2}}\omega {\kern 1pt} '(45 + 76\omega {\kern 1pt} '))) \\ \, + \frac{{225}}{{2048}} - \frac{{{{\omega }^{{'2}}}}}{2} - \frac{1}{{128{{a}^{2}}{{n}^{2}}}}\ln \frac{8}{\mu }\left( {149{{n}^{2}}{{\sigma }^{2}} + 9{{a}^{2}}(32\omega {\kern 1pt} '\, + 5{{n}^{2}}) - 36{{a}^{2}}{{n}^{2}}\ln \frac{8}{\mu }} \right). \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 2 \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( 2 \right)}}^{\sigma } = \left( {\frac{\sigma }{a} - {{\mu }^{2}}\frac{{{{\sigma }^{3}}}}{{192{{a}^{3}}}}( - 26 + 64{{n}^{2}})} \right){{e}^{{i2\psi }}} + {{\mu }^{4}}\frac{{{{\sigma }^{3}}}}{{6144{{a}^{5}}}} \\ \, \times \left( { - 10\,240{{a}^{2}}( - 2 + {{n}^{2}})\omega {\kern 1pt} '\; + \left( {( - 5899 - 4164{{n}^{2}} + 240{{n}^{4}}){{\sigma }^{2}} + 3870{{a}^{2}} - 6192{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i2\psi }}} \\ \, - \left( {\mu \frac{{5{{\sigma }^{2}}}}{{8{{a}^{2}}}} + {{\mu }^{3}}\frac{{{{\sigma }^{4}}}}{{384{{a}^{4}}}}(606 + 17{{n}^{2}}) + O({{\mu }^{5}})} \right){{e}^{{i3\psi }}} + O({{\mu }^{4}}){{e}^{{i4\psi }}} + \mu \left( { - \frac{{3{{\sigma }^{2}}}}{{4{{a}^{2}}}} - \frac{{5\omega {\kern 1pt} '}}{{2{{n}^{2}}}}} \right){{e}^{{i\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + {{\mu }^{3}}\frac{1}{{768{{a}^{4}}{{n}^{4}}}}\left( {144{{a}^{2}}(35 + 32{{n}^{2}}){{{\omega '}}^{2}} + 6{{a}^{2}}{{n}^{2}}\omega {\kern 1pt} '\left( {(631 + 192{{n}^{2}}){{\sigma }^{2}} - 150{{a}^{2}} + 240{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i\psi }}} \\ \, + {{\mu }^{3}}\frac{{{{\sigma }^{2}}}}{{768{{a}^{4}}}}\left( {( - 499 + 184{{n}^{2}}){{\sigma }^{2}} + 45{{a}^{2}} - 72{{a}^{2}}\ln \frac{8}{\mu }} \right){{e}^{{i\psi }}} + O({{\mu }^{5}}){{e}^{{i\psi }}} + O({{\mu }^{4}}){{e}^{{i0\psi }}} + O({{\mu }^{3}}){{e}^{{ - i1\psi }}} + O({{\mu }^{6}}){{e}^{{i2\psi }}}, \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 2 \right)}}^{\psi } = i\left( {\frac{1}{a} + {{\mu }^{2}}\frac{{{{\sigma }^{2}}}}{{48{{a}^{3}}}}(13 - 20{{n}^{2}})} \right){{e}^{{i2\psi }}} + i{{\mu }^{4}}\frac{{{{\sigma }^{2}}}}{{6144{{a}^{5}}}} \\ \, \times \left( {1024{{a}^{2}}(25 - 14{{n}^{2}})\omega {\kern 1pt} '\; + \left( {( - 17\,697 - 8828{{n}^{2}} + 336{{n}^{4}}){{\sigma }^{2}} + 7740{{a}^{2}} - 12\,384{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i2\psi }}} \\ \, - i\left( {\mu \frac{{5\sigma }}{{8{{a}^{2}}}} + {{\mu }^{3}}\frac{{{{\sigma }^{3}}}}{{384{{a}^{4}}}}(1010 + 7{{n}^{2}}) + O({{\mu }^{5}})} \right){{e}^{{i3\psi }}} + O({{\mu }^{4}}){{e}^{{i4\psi }}} + O({{\mu }^{3}}){{e}^{{i5\psi }}} + i\mu \left( {\frac{\sigma }{{4{{a}^{2}}}} - \frac{{5\omega {\kern 1pt} '}}{{2{{n}^{2}}\sigma }}} \right){{e}^{{i\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + i{{\mu }^{3}}\frac{1}{{768{{a}^{4}}{{n}^{4}}\sigma }}\left( {144{{a}^{4}}(35 + 32{{n}^{2}})\omega {\kern 1pt} {{'}^{2}}\, + 6{{a}^{2}}{{n}^{2}}\omega {\kern 1pt} '\left( {(1053 + 128{{n}^{2}}){{\sigma }^{2}} - 150{{a}^{2}} + 240{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i\psi }}} \\ \, + i{{\mu }^{3}}\frac{\sigma }{{768{{a}^{4}}}}{{e}^{{i\psi }}} + O({{\mu }^{5}}){{e}^{{i\psi }}} + i{{\mu }^{2}}\frac{3}{{32{{a}^{3}}}}\left( { - 6{{\sigma }^{2}} - 5{{a}^{2}} + 8{{a}^{2}}\ln \frac{8}{\mu }} \right){{e}^{{i0\psi }}} + O({{\mu }^{4}}){{e}^{{i0\psi }}} + O({{\mu }^{3}}){{e}^{{ - i\psi }}}, \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 2 \right)}}^{s} = i\left( { - \mu \frac{{n{{\sigma }^{2}}}}{{2{{a}^{2}}}} + {{\mu }^{3}}\left( {\frac{{n{{\sigma }^{4}}}}{{192{{a}^{4}}}}( - 229 + 24{{n}^{2}}) + \frac{{\omega {\kern 1pt} '{{\sigma }^{2}}}}{{{{a}^{2}}n}}(5 - 2{{n}^{2}})} \right) + O({{\mu }^{5}})} \right){{e}^{{i2\psi }}} - i{{\mu }^{2}}\frac{{n{{\sigma }^{3}}}}{{6{{a}^{3}}}}{{e}^{{i3\psi }}} \\ \, + i{{\mu }^{4}}\frac{{{{\sigma }^{3}}}}{{256{{a}^{5}}n}}\left( {80{{a}^{2}}(5 - 2{{n}^{2}})\omega {\kern 1pt} '\; + {{n}^{2}}\left( {( - 179 + 12{{n}^{2}}){{\sigma }^{2}} + 5{{a}^{2}} - 8{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i3\psi }}} + O({{\mu }^{6}}){{e}^{{i3\psi }}} \\ \, - i{{\mu }^{3}}\frac{{49n{{\sigma }^{4}}}}{{576{{a}^{4}}}}{{e}^{{i4\psi }}} + O({{\mu }^{5}}){{e}^{{i4\psi }}} + O({{\mu }^{3}}){{e}^{{i5\psi }}} + i{{\mu }^{2}}\frac{\sigma }{{128{{a}^{3}}{{n}^{3}}}} \\ \end{gathered} $$
$$\begin{gathered} \, \times \left( {56{{a}^{2}}(15 + 8{{n}^{2}})\omega {\kern 1pt} '\; + {{n}^{2}}\left( {( - 749 + 160{{n}^{2}}){{\sigma }^{2}} - 150{{a}^{2}} + 240{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i1\psi }}} + O({{\mu }^{4}}){{e}^{{i1\psi }}} \\ \, - i{{\mu }^{3}}\frac{{{{\sigma }^{2}}}}{{64{{a}^{4}}n}}\left( {320{{a}^{2}}\omega {\kern 1pt} '\; + 9{{n}^{2}}\left( {5{{\sigma }^{2}} + 5{{a}^{2}} - 8{{a}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i0\psi }}} + O({{\mu }^{5}}){{e}^{{i0\psi }}} + O({{\mu }^{3}}){{e}^{{ - i\psi }}}. \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 3 \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( 3 \right)}}^{\sigma } = \left( {{{\sigma }^{2}} + {{\mu }^{2}}\frac{{215{{\sigma }^{4}}}}{{128{{a}^{2}}}} + O({{\mu }^{4}})} \right){{e}^{{i3\psi }}} + \left( {\mu \frac{{8{{\sigma }^{3}}}}{{3a}} + O({{\mu }^{3}})} \right){{e}^{{i2\psi }}} + O({{\mu }^{2}}), \\ \varepsilon _{{\left( 3 \right)}}^{\psi } = i\left( {\sigma + {{\mu }^{2}}\frac{{1075{{\sigma }^{3}}}}{{384{{a}^{2}}}} + O({{\mu }^{4}})} \right){{e}^{{i3\psi }}} + i\left( {\mu \frac{{16{{\sigma }^{2}}}}{{3a}} + O({{\mu }^{3}})} \right){{e}^{{i2\psi }}} + O({{\mu }^{2}}), \\ \varepsilon _{{\left( 3 \right)}}^{s} = O({{\mu }^{2}}). \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 4 \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( 4 \right)}}^{\sigma } = \left( {\frac{{{{\sigma }^{3}}}}{{{{a}^{2}}}} + {{\mu }^{2}}\left( {\frac{{{{\sigma }^{5}}}}{{720{{a}^{4}}}}(1449 + 26{{n}^{2}})} \right) + O({{\mu }^{4}})} \right){{e}^{{i4\psi }}} + \left( {\mu \frac{{99{{\sigma }^{4}}}}{{32{{a}^{3}}}} + O({{\mu }^{3}})} \right){{e}^{{i3\psi }}} \\ + \,{{\mu }^{2}}\frac{{9{{\sigma }^{3}}}}{{32{{a}^{4}}}}\left( {5{{a}^{2}} + 20{{\sigma }^{2}} - 8{{a}^{2}}\ln \frac{8}{\mu }} \right){{e}^{{i2\psi }}} + O({{\mu }^{2}}), \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 4 \right)}}^{\psi } = i\left( {\frac{{{{\sigma }^{2}}}}{{{{a}^{2}}}} + {{\mu }^{2}}\frac{{{{\sigma }^{4}}}}{{480{{a}^{4}}}}(1449 + 16{{n}^{2}})} \right){{e}^{{i4\psi }}} + i\left( {\mu \frac{{165{{\sigma }^{3}}}}{{32{{a}^{3}}}} + O({{\mu }^{3}})} \right){{e}^{{i3\psi }}} \\ \, + i{{\mu }^{2}}\frac{{9{{\sigma }^{2}}}}{{16{{a}^{4}}}}\left( {30{{\sigma }^{2}} + 5{{a}^{2}} - 8{{a}^{2}}\ln \frac{8}{\mu }} \right){{e}^{{i2\psi }}} + O({{\mu }^{2}}), \\ \varepsilon _{{\left( 4 \right)}}^{s} = \left( {i\mu \frac{{n{{\sigma }^{4}}}}{{12{{a}^{3}}}} + O({{\mu }^{3}})} \right){{e}^{{i4\psi }}} + O({{\mu }^{2}}). \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 5 \right)}}}\)

$$\begin{gathered} \varepsilon _{{(5)}}^{\sigma } = {{\sigma }^{4}}{{e}^{{i5\psi }}} + O(\mu ), \\ \varepsilon _{{(5)}}^{\psi } = i{{\sigma }^{3}}{{e}^{{i5\psi }}} + O(\mu ), \\ \varepsilon _{{(5)}}^{s} = O(\mu ). \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( 0 \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( 0 \right)}}^{\sigma } = i\left( { - {{\mu }^{2}}\frac{{n\sigma }}{{2a}} + {{\mu }^{4}}\frac{{n{{\sigma }^{3}}}}{{16{{a}^{3}}}}( - 8 + 3{{n}^{2}})} \right){{e}^{{i0\psi }}} + i\mu \frac{1}{{2n}}{{e}^{{i1\psi }}} \\ \, + i{{\mu }^{3}}\frac{1}{{128{{a}^{2}}{{n}^{3}}}}\left( { - 168{{a}^{2}}\omega {\kern 1pt} '\; + 96{{a}^{2}}{{n}^{2}}\omega {\kern 1pt} '\; + 15{{a}^{2}}{{n}^{2}} - 11{{n}^{2}}{{\sigma }^{2}} - 8{{n}^{4}}{{\sigma }^{2}} - 24{{a}^{2}}{{n}^{2}}\ln \frac{8}{\mu }} \right){{e}^{{i1\psi }}} \\ \, - i{{\mu }^{3}}\frac{{7n{{\sigma }^{2}}}}{{32{{a}^{2}}}}{{e}^{{ - i\psi }}} + O({{\mu }^{4}}), \\ \end{gathered} $$
$$\begin{gathered} \varepsilon _{{\left( 0 \right)}}^{\psi } = \left( { - {{\mu }^{2}}\frac{n}{a} + {{\mu }^{4}}\frac{{16{{a}^{2}}( - 1 + 2{{n}^{2}})\omega {\kern 1pt} '{{\sigma }^{2}} + 3{{n}^{2}}( - 11 + 2{{n}^{2}}){{\sigma }^{4}}}}{{16{{a}^{3}}n{{\sigma }^{2}}}}} \right){{e}^{{i0\psi }}} \\ + \left( { - \mu \frac{1}{{2n\sigma }} + {{\mu }^{3}}\frac{1}{{128{{a}^{2}}{{n}^{3}}\sigma }}\left( {168{{a}^{2}}\omega {\kern 1pt} '\; - 96{{a}^{2}}{{n}^{2}}\omega {\kern 1pt} '\; - 15{{a}^{2}}{{n}^{2}} - 135{{n}^{2}}{{\sigma }^{2}} + 56{{n}^{4}}{{\sigma }^{2}} + 24{{a}^{2}}{{n}^{2}}\ln \frac{8}{\mu }} \right)} \right){{e}^{{i\psi }}} \\ \, - {{\mu }^{3}}\frac{{5n\sigma }}{{32{{a}^{2}}}}{{e}^{{ - i\psi }}} + O({{\mu }^{4}}), \\ \varepsilon _{{\left( 0 \right)}}^{s} = (1 + O({{\mu }^{3}})){{e}^{{i0\psi }}} + O({{\mu }^{2}}). \\ \end{gathered} $$

The form of the base deformation \({\boldsymbol{\varepsilon }_{{\left( { - 1} \right)}}}\)

$$\begin{gathered} \varepsilon _{{\left( { - 1} \right)}}^{\sigma } = {{e}^{{ - i\psi }}} + O\left( \mu \right), \\ \varepsilon _{{\left( { - 1} \right)}}^{\psi } = - i\frac{1}{\sigma }{{e}^{{ - i\psi }}} + O\left( \mu \right), \\ \varepsilon _{{\left( { - 1} \right)}}^{s} = O\left( \mu \right). \\ \end{gathered} $$

APPENDIX B

Let us find the velocity field \({\mathbf{v}}\) for a source with the density

$$\begin{gathered} Q\left( {\sigma ,\psi {\text{,}}\theta } \right) = \delta \left( {\sigma - {{\sigma }_{{{\text{bound}}}}}} \right){{e}^{{im\psi + in\theta }}}, \\ {{\sigma }_{{{\text{bound}}}}} = a - {{\mu }^{2}}\frac{5}{{16}}a + {{\mu }^{4}}\frac{1}{{1024}}\left( { - 469 + 312\ln \frac{8}{\mu }} \right)a + O({{\mu }^{6}}). \\ \end{gathered} $$

In the domain \(\sigma > {{\sigma }_{{{\text{bound}}}}}\) the velocity field can be expressed in terms of \(Q\) by the formula

$$\begin{gathered} {\mathbf{v}} = \nabla \Phi ,\quad \Phi \,{\text{ = }} - \frac{1}{{4\pi }}\int {\frac{{Q\left( {r{\kern 1pt} '} \right)dr{\kern 1pt} '}}{{\left| {r - r{\kern 1pt} '} \right|}}} , \\ {{\left| {r - r{\kern 1pt} '} \right|}^{2}} = {{R}^{2}}\left( {1 - \mu \frac{\rho }{a}\cos \phi } \right)\left( {1 - \mu \frac{{\rho {\kern 1pt} '}}{a}\cos \phi {\kern 1pt} '} \right)(2(1 - \cos \left( {\theta - \theta {\kern 1pt} '} \right) + {{\gamma }^{2}})), \\ {{\gamma }^{2}} = {{\mu }^{2}}\frac{{{{{\left( {\rho \sin \phi - \rho {\kern 1pt} '\sin \phi {\kern 1pt} '} \right)}}^{2}} + {{{\left( {\rho \cos \phi - \rho {\kern 1pt} '\cos \phi {\kern 1pt} '} \right)}}^{2}}}}{{a\left( {a - \mu \rho \cos \phi } \right)\left( {a - \mu \rho {\kern 1pt} '\cos \phi {\kern 1pt} '} \right)}}. \\ \end{gathered} $$
(B.1)

With regard to (B.1) we obtain the expression for \(\Phi \)

$$\Phi = - \frac{{{{e}^{{in\theta }}}}}{{2\pi {{{\left( {1 - \mu \frac{\rho }{a}\cos \phi } \right)}}^{{1/2}}}}}\int\limits_0^{{{\sigma }_{{bound}}}} {\int\limits_0^{2\pi } {\frac{{\delta (\sigma {\kern 1pt} '\, - {{\sigma }_{{bound}}}){{e}^{{im\psi '}}}\sigma {\kern 1pt} '}}{{{{{\left( {1 - \mu \frac{{\rho {\kern 1pt} '}}{a}\cos \phi {\kern 1pt} '} \right)}}^{{1/2}}}}}P} } \left( {\sigma ,\psi ,\sigma {\kern 1pt} ',\psi {\kern 1pt} '} \right)d\sigma {\kern 1pt} 'd\psi {\kern 1pt} ',$$
(B.2)

where

$$P = \int\limits_0^\pi {\frac{{\cos n\alpha d\alpha }}{{{{{(2\left( {1 - \cos \alpha } \right) + {{\gamma }^{2}})}}^{{1/2}}}}}} .$$

All the complexity consists in calculating the asymptotics of the integral P, while the further integration in (B.2) can be carried out elementary. In accordance with [6], we obtain

$$\begin{gathered} P = - 2{{S}_{n}} + \ln \frac{8}{\gamma } + {{\gamma }^{2}}\left( {\frac{{4{{n}^{2}} - 1}}{{16}}\ln \frac{8}{\gamma } + \frac{{4{{n}^{2}} + 1}}{{16}} - \frac{{4{{n}^{2}} - 1}}{8}{{S}_{n}}} \right) - \frac{1}{{2048}}{{\gamma }^{4}}\left( {21 + 36{{S}_{n}} + 8{{n}^{2}}_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}} \right. \\ \, \times \left. {\left( {7 - 20{{S}_{n}} + 2{{n}^{2}}\left( { - 3 + 4{{S}_{n}}} \right) + ( - 18 + 80{{n}^{2}} - 32{{n}^{4}})\ln \frac{8}{\gamma }} \right)} \right) + O({{\gamma }^{6}}), \\ {{S}_{n}} = \sum\limits_{l = 1}^n {\frac{1}{{2l - 1}}\,} . \\ \end{gathered} $$
(B.3)

For brevity, in what follows the multiplier \({{e}^{{in\theta }}}\) will be omitted. Integrating in (B.2) with regard to (B.3), from (B.1) we obtain

$$\begin{gathered} v_{{}}^{\sigma } = 1 + {{\mu }^{2}}\left( {\frac{1}{4}{{n}^{2}}\left( {4{{S}_{n}} - 2\ln \frac{8}{\mu }} \right)} \right) + \mu \frac{1}{8}\left( {1 + 8{{S}_{n}} - 4\ln \frac{8}{\mu }} \right)\cos \psi \\ \, + {{\mu }^{3}}\frac{1}{{512}}\left( {101 + 56{{n}^{2}}\left( { - 1 + 8{{S}_{n}}} \right) + 192{{S}_{n}} - 8( - 9 + 28{{n}^{2}} - 24{{S}_{n}})\ln \frac{8}{\mu }} \right)\cos \psi \\ \end{gathered} $$
$$\begin{gathered} \, - {{\mu }^{3}}\frac{1}{{64}}\left( {108\ln 2\ln 2 + \ln \mu \left( { - 72\ln 2 + 12\ln \mu } \right)} \right)\cos \psi + {{\mu }^{2}}\left( {\frac{7}{{64}}} \right)\cos 2\psi \\ \, + {{\mu }^{3}}\frac{1}{{256}}\left( {11 + 24{{S}_{n}} - 12\ln \frac{8}{\mu }} \right)\cos 3\psi + O({{\mu }^{4}}),\quad m = 0, \\ \end{gathered} $$
$$\begin{gathered} v_{{}}^{\sigma } = \left( {\frac{1}{2} + {{\mu }^{2}}\frac{1}{{16}}\left( {2 + 4{{S}_{n}} + {{n}^{2}}\left( { - 1 - 8{{S}_{n}}} \right) - (2 - 4{{n}^{2}})\ln \frac{8}{\mu }} \right) + O({{\mu }^{4}})} \right){{e}^{{i\psi }}} \\ \, + \left( { - \mu \frac{1}{8} + {{\mu }^{3}}\frac{1}{{1536}}\left( {61 + 144{{S}_{n}} - 8{{n}^{2}}\left( {7 + 72{{S}_{n}}} \right) - 144(1 - 2{{n}^{2}})\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i2\psi }}} \\ \, + \left( { - {{\mu }^{2}}\frac{1}{{64}} + {{\mu }^{4}}\frac{1}{{12288}}\left( {1409 + 720{{S}_{n}} - 4{{n}^{2}}\left( {103 + 576{{S}_{n}}} \right) + 144( - 9 + 8{{n}^{2}})\ln \frac{8}{\mu }} \right) + O({{\mu }^{6}})} \right){{e}^{{i3\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, + \left( { - {{\mu }^{3}}\frac{{11}}{{768}} + O({{\mu }^{5}})} \right){{e}^{{i4\psi }}} - \left( {\frac{{59}}{{12288}}{{\mu }^{4}} + O({{\mu }^{6}})} \right){{e}^{{i5\psi }}} + \left( {\frac{1}{{32}}{{n}^{2}}{{\mu }^{3}}\left( {1 + 8{{S}_{n}} - 4\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i0\psi }}} \\ \, + \left( {{{\mu }^{2}}\frac{1}{{64}}\left( {21 + 8{{S}_{n}} - 16\ln \frac{8}{\mu }} \right) + {{\mu }^{4}}\frac{1}{{2048}}\left( {1435 + 440{{S}_{n}} + 8{{n}^{2}}\left( { - 39 + 40{{S}_{n}}} \right)\mathop {}\limits_{_{{}}}^{^{{}}} } \right.} \right. \\ \end{gathered} $$
$$\begin{gathered} \left. {\left. {\, + 32( - 26 + {{n}^{2}})\ln \frac{8}{\mu }} \right)} \right){{e}^{{ - i\psi }}} + \left( { - \frac{3}{{1024}}{{\mu }^{3}}\left( { - 25 + 8\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{ - 2i\psi }}} \\ \, + \left( {{{\mu }^{4}}\frac{1}{{122880}}\left( {6233 + 1440{{S}_{n}} - 3240\ln \frac{8}{\mu }} \right) + O({{\mu }^{6}})} \right){{e}^{{ - 3i\psi }}} \\ \, + O({{\mu }^{6}}){{e}^{{ - i\psi }}} + O({{\mu }^{5}}){{e}^{{ - 4i\psi }}},\quad m = 1, \\ \end{gathered} $$
$$\begin{gathered} v_{{}}^{\sigma } = \left( {\frac{1}{2} + {{\mu }^{2}}\frac{1}{{24}}( - 2 + {{n}^{2}}) + {{\mu }^{4}}\frac{1}{{6144}}( - 343 + 576{{S}_{n}} + 8{{n}^{4}}\left( {48{{S}_{n}} - 5} \right) + 10{{n}^{2}}\left( {13 - 240{{S}_{n}}} \right))} \right){{e}^{{i2\psi }}} \\ \, - {{\mu }^{4}}\frac{1}{{128}}(6 - 25{{n}^{2}} + 4{{n}^{4}})\ln \frac{8}{\mu }{{e}^{{i2\psi }}} - \left( {\frac{1}{{16}}\mu - {{\mu }^{3}}\frac{1}{{3072}}\left( {116{{n}^{2}} - 165 - 72\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i3\psi }}} \\ \, - \left( {\frac{1}{{96}}{{\mu }^{2}} - {{\mu }^{4}}\frac{1}{{122880}}\left( {1233 + 2720{{n}^{2}} - 4680\ln \frac{8}{\mu }} \right) + O({{\mu }^{6}})} \right){{e}^{{i4\psi }}} \\ \end{gathered} $$
$$\begin{gathered} \, - \left( {\mu \frac{1}{{16}} - {{\mu }^{3}}\frac{1}{{1024}}\left( {67 + 112{{S}_{n}} - 8{{n}^{2}}\left( {7 + 40{{S}_{n}}} \right) - 80\left( {1 - 2{{n}^{2}}} \right)\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i\psi }}} \\ \, + \left( {{{\mu }^{4}}\frac{1}{{256}}{{n}^{2}}\left( {21 + 16{{S}_{n}} - 20\ln \frac{8}{\mu }} \right) + O({{\mu }^{6}})} \right){{e}^{{i0\psi }}} \\ \, + \left( {{{\mu }^{3}}\frac{1}{{2048}}\left( {383 + 64{{S}_{n}} - 248\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{ - i\psi }}} \\ \, + O({{\mu }^{3}}){{e}^{{i5\psi }}} + O({{\mu }^{4}}){{e}^{{ - 2i\psi }}} + O({{\mu }^{5}}),\quad m = 2, \\ \end{gathered} $$
$$\begin{gathered} v_{{}}^{\sigma } = \left( {\frac{1}{2} + {{\mu }^{2}}\left( { - \frac{3}{{64}} + \frac{{{{n}^{2}}}}{{96}}} \right) + O({{\mu }^{4}})} \right){{e}^{{i3\psi }}} - \left( {\frac{1}{{24}}\mu - {{\mu }^{3}}\frac{1}{{1920}}\left( { - 63 + 20{{n}^{2}} - 30\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i4\psi }}} \\ \, - \left( {{{\mu }^{2}}\frac{1}{{128}} + O({{\mu }^{4}})} \right){{e}^{{i5\psi }}} - \left( {{{\mu }^{3}}\frac{7}{{1280}} + O({{\mu }^{5}})} \right){{e}^{{i6\psi }}} \\ \, - \left( {\mu \frac{1}{{24}} - {{\mu }^{3}}\frac{1}{{1536}}\left( { - 75 + 52{{n}^{2}} - 24\ln \frac{8}{\mu }} \right) + O({{\mu }^{5}})} \right){{e}^{{i2\psi }}} \\ \, - \left( {{{\mu }^{2}}\frac{1}{{64}} + O({{\mu }^{4}})} \right){{e}^{{i\psi }}} + O({{\mu }^{4}}){{e}^{{i0\psi }}},\quad m = 3, \\ \end{gathered} $$
$$\begin{gathered} v_{{}}^{\sigma } = \left( {\frac{1}{2} + {{\mu }^{2}}\frac{1}{{240}}( - 8 + {{n}^{2}})} \right){{e}^{{i4\psi }}} - \mu \frac{1}{{32}}{{e}^{{i5\psi }}} - {{\mu }^{2}}\frac{1}{{160}}{{e}^{{i6\psi }}} - \mu \frac{1}{{32}}{{e}^{{i3\psi }}} - {{\mu }^{2}}\frac{1}{{96}}{{e}^{{i2\psi }}} + O({{\mu }^{3}}),\quad m = 4, \\ v_{{}}^{\sigma } = \frac{1}{2}{{e}^{{i5\psi }}} - \frac{1}{{40}}\mu {{e}^{{i4\psi }}} - \frac{1}{{40}}\mu {{e}^{{i6\psi }}} + O({{\mu }^{2}}),\quad m = 5. \\ \end{gathered} $$

Here, \(v_{{}}^{\sigma }\) is the expression for the \(\sigma \)-component of the velocity field v on the boundary \(\sigma = {{\sigma }_{{{\text{bound}}}}}\). The velocities \(v_{{}}^{\sigma }\), m < 0 can be obtained by means of complex conjugation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinshin, R.V. New Instability of a Thin Vortex Ring in an Ideal Fluid. Fluid Dyn 55, 74–88 (2020). https://doi.org/10.1134/S0015462820010012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820010012

Key words:

Navigation