Skip to main content
Log in

On the Application of Shallow Water Theory to Modeling Wave Flows with Hydraulic Bores

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The basic conservation laws of the shallow water theory are deduced from the multidimensional integral conservation laws of mass and total impulse describing the flow of ideal incompressible fluid over the horizontal bottom. This derivation is based on the concept of the local hydrostatic approximation which generalizes the long wave approximation and is used to justify the application of the shallow water theory to modeling wave flows of fluid with hydraulic bores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrichs, K.O., On the derivation of shallow water theory, Commun. Pure Appl. Math., 1948, vol. 1, pp. 109–134.

    Article  MATH  Google Scholar 

  2. Stocker, J.J., Water Waves: The Mathematical Theory with Applications, New York: Wiley, 1957.

    Google Scholar 

  3. Chow, T., Open-Channel Hydraulics, New York: McGraw-Hill, 1959.

    Google Scholar 

  4. Henderson, F.M., Open Channel Flow, New York: MacMillan, 1966.

    Google Scholar 

  5. Ovsyannikov, L.V., To the grounding of shallow water theory, Din. Sploshnoi Sredy, 1973, no. 2, pp. 104–125.

    Google Scholar 

  6. Whitham, J., Linear and Nonlinear Waves, New York: Wiley, 1974.

    MATH  Google Scholar 

  7. Hibberd, S. and Peregrine, D.H., Surf and runup on a beach: a uniform bore, J. Fluid Mech., 1979, vol. 95, pp. 323–345.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ovsyannikov, L.V., Makarenko, N.I., Nalimov, V.I., et al., Nelinenye problemmy teorii poverkhnostnykh i vnutrennikh voln (Nonlinear Problems of Surface and Internal Waves Theory), Novosibirsk: Nauka, 1985.

    Google Scholar 

  9. Shokin, Yu.I., Chubarov, L.B., Marchuk, A.G., and Simonov, K.V., Vychislitel’nyi eksperiment v probleme tsunami (Calculation Experiment in a Problem on Seismic Sea Wave), Novosibirsk: Nauka, 1989.

    Google Scholar 

  10. Yeh, H., Liu, P., and Synolakis, C.E., Long-Wave Runup Models, Singapore: World Sci., 1996.

    Google Scholar 

  11. Lyapidevskii, V.Yu. and Teshukov, V.M., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti (Mathematical Models of Long Waves Propagation in Inhomogeneous Liquid), Novosibirsk: Sib. Otd. RAN, 2000.

    Google Scholar 

  12. Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical Problems on Solving Numerically a Set of Hyperbolic Equations), Moscow: Fizmatlit, 2001.

    Google Scholar 

  13. Friedrichs, K.O. and Lax, P.D., Systems of conservation equation with convex extension, Proc. Nat. Acad. Sci: USA, 1971, vol. 68, pp. 1686–1688.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Philadelphia, PA: Soc. Industr. Appl. Math., 1972.

    Google Scholar 

  15. Ostapenko, V.V., The way to modify equations of shallow water theory which suppose discontinuous waves propagation along a wadi, Prikl. Mekh. Tekh. Fiz., 2007, vol. 48, no. 6, pp. 22–43.

    Google Scholar 

  16. Bukreev, V.I., Gusev, A.V., and Ostapenko, V.V., Destruction of liquid free surface discontinuity above the ledge of channel bottom, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, 2003, no. 6, pp. 72–83.

    Google Scholar 

  17. Bukreev, V.I., Gusev, A.V., and Ostapenko, V.V., Waves in an open channel formed under shield remove in front of uneven bottom of shelf-type, Vodn. Resur., 2004, vol. 31, no. 5, pp. 540–545.

    Google Scholar 

  18. Gusev, A.V., Ostapenko, V.V., Malysheva, A.A., and Malysheva, I.A., Waves in an open channel formed by discontinuous wave flow above the bottom step, Prikl. Mekh. Tekh. Fiz., 2008, vol. 49, no. 1, pp. 31–44.

    MATH  Google Scholar 

  19. Richard, G.L. and Gavrilyuk, S.L., A new model of roll waves: comparison with Brock’s experiments, J. Fluid Mech., 2012, vol. 698, pp. 374–405.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Richard, G.L. and Gavrilyuk, S.L., The classical hydraulic jump in a model of shear shallow water flow, J. Fluid Mech., 2013, vol. 725, pp. 492–521.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Richard, G.L. and Gavrilyuk, S.L., Modelling turbulence generation in solitary waves on shear shallow water flows, J. Fluid Mech., 2015, vol. 773, pp. 49–74.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Atavin, A.A. and Shugrin, S.M., Differential equations in shallow water theory, Din. Sploshnoi Sredy, 1985, no. 70, pp. 25–53.

    MATH  Google Scholar 

  23. Ostapenko, V.V., O zakonakh sokhraneniya teorii melkoi vody, Dokl. Akad. Nauk, 2015, vol. 464, no. 5, pp. 558–561.

    MathSciNet  Google Scholar 

  24. Ostapenko, V.V., K obosnovaniyu teorii melkoi vody, Dokl. Akad. Nauk, 2018, vol. 478, no. 2, pp. 158–163.

    MathSciNet  Google Scholar 

  25. Freeman, N.C., Simple waves on shear flow: similarity solutions, J. Fluid Mech., 1972, vol. 56, pp. 257–263.

    Article  ADS  MATH  Google Scholar 

  26. Green, A.E. and Naghdi, P.M., A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 1976, vol. 78, pp. 237–246.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ostapenko.

Additional information

Original Russian Text © V.V. Ostapenko, 2018, published in Prikladnaya Matematika i Mekhanika, 2018, Vol. 82, No. 4, pp. 441–458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, V.V. On the Application of Shallow Water Theory to Modeling Wave Flows with Hydraulic Bores. Fluid Dyn 53 (Suppl 2), 19–33 (2018). https://doi.org/10.1134/S0015462818060071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818060071

Keywords

Navigation