Skip to main content
Log in

Simulation of surface gravity waves in the Dyachenko variables on the free boundary of flow with constant vorticity

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Waves in deep water with constant vorticity in the region bounded by the free surface and the infinitely deep plane bottom are considered. Using the conformal variables and the conformal transform technique, a system of exact integro-differential equations solved relative to the derivatives with respect to time is derived and the equivalent system of equations is obtained in the Dyachenko variables. The efficiency of using the obtained system in the Dyachenko variables for investigating surface wave dynamics on the current of infinite depth with constant vorticity is demonstrated with reference to numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Benjamin, “The Solitary Wave on a Stream with an Arbitrary Distribution of Vorticity,” J. Fluid Mech. 12, 97–116 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N.C. Freeman and R.S. Johnson, “Shallow Water Waves on Shear Flows,” J. Fluid Mech. 42, 401–409 (1970).

    Article  ADS  MATH  Google Scholar 

  3. C.S. Yih, “SurfaceWaves in Flowing Water,” J. Fluid Mech. 51, 209–220 (1972).

    Article  ADS  MATH  Google Scholar 

  4. R.S. Johnson, “Ring Waves on the Surface of Shear Flows: a Linear and Nonlinear Theory,” J. Fluid Mech. 215, 145–160 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K.A. Belibassakis, “A Coupled-Mode Model for the Scattering of Water Waves by Shearing Currents in Variable Bathymetry,” J. Fluid Mech. 578, 413–434 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V.A. Miroshnikov, “The Boussinesq–Rayleigh Approximation for Rotational Solitary Waves on Shallow Water with Uniform Vorticity,” J. Fluid Mech. 456, 1–32 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. W. Choi, “Strongly Nonlinear Long Gravity Waves in Uniform Shear Flows,” Phys. Rev. E. 68, 1–7 (2003).

    Article  Google Scholar 

  8. A.F. Teles da Silva and D.H. Peregrine, “Steep, Steady Surface Waves on Water of Finite Depth with Constant Vorticity,” J. Fluid Mech. 195, 281–302 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  9. D.I. Pullin and R.H.J. Grimshaw, “Finite-Amplitude Solitary Waves at the Interface Between Two Homogeneous Fluids,” Phys. Fluids 31, No. 12, 3550–3559 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.-M. Vanden-Broeck, “Steep Solitary Waves in Water of Finite Depth with Constant Vorticity,” J. Fluid Mech. 274, 339–348 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R.S. Johnson, “On the Modulation of Water Waves on Shear Flows,” Proc. R. Soc. Lond. A. 347, 537–546 (1976).

    Article  ADS  MATH  Google Scholar 

  12. J.C. Li, W.H. Hui, and M.A. Donelan, “Effects of Velocity Shear on the Stability of Surface Deep Water Wave Trains,” in: K. Horikawa and H. Maruo (Eds.) Nonlinear Water Waves (Springer, 1987), 213–220.

    Google Scholar 

  13. M. Oikawa, K. Chow, and D.J. Benney, “The Propagation of NonlinearWave Packets in a Shear Flow with a Free Surface,” Stud. Appl. Math. 76, 69–92 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Thomas, C. Kharif, and M. Manna, “A Nonlinear Schrödinger Equation forWater Waves on Finite Depth with Constant Vorticity,” Phys. Fluids 24, 127102 (2012).

    Article  ADS  Google Scholar 

  15. A.I. Dyachenko, V.E. Zakharov, and E.A. Kuznetsov, “Nonlinear Dynamics of the Free Surface of an Ideal Fluid,” Fizika Plazmy 22, No. 10, 916–928 (1996).

    Google Scholar 

  16. D. Chalikov and D. Sheinin, “Numerical Modeling of Surface Waves Based on Principal Equations of Potential Wave Dynamics,” Technical Note (NOAA/NCEP/OMB, 1996). 54 p.

    MATH  Google Scholar 

  17. D. Chalikov and D. Sheinin, “Direct Modeling of One-Dimensional Nonlinear Potential Waves,” Advances in Fluid Mechanics 17, 207–258 (1998).

    Google Scholar 

  18. V.E. Zakharov, A.I. Dyachenko, and O.A. Vasilyev, “New Method for Numerical Simulation of a Nonstationary Potential Flow of Incompressible Fluid with a Free Surface,” Eur. J. Mech. B-Fluids 21, No. 3, 283–291 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. A.I. Dyachenko and V.E. Zakharov, “Modulation Instability of StokesWave→FreakWave,” Pis’ma v ZhETF 81, No. 6, 318–322 (2005).

    Google Scholar 

  20. V.E. Zakharov, A.I. Dyachenko, and A.O. Prokofiev, “FreakWaves as Nonlinear Stage of StokesWaveModulation Instability,” Eur. J. Mech. B-Fluids 25, No. 5, 677–692 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A.I. Dyachenko, E.A. Kuznetsov, M.D. Spector, and V.E. Zakharov, “Analytical Description of the Free Surface Dynamics of an Ideal Fluid (Canonical Formalism and Conformal Mapping),” Phys. Lett. A. 221, Nos. 1–2, 73–79 (1996).

    Article  ADS  Google Scholar 

  22. L.V. Ovsyannikov, “Plane Problem of the Time-Dependent Motion of Fluid with Free Boundaries,” Continuum Dynamics, 8, 22–26 (1971).

    Google Scholar 

  23. V.P. Ruban, “Explicit Equations for Two-Dimensional Water Waves with Constant Vorticity,” Phys. Rev. E. 77, 037302 (2008).

    Article  ADS  Google Scholar 

  24. J.A. Simmen and P.G. Saffman, “Steady Deep-Water Waves on a Linear Shear Current,” Stud. Appl. Maths. 73, 35–57 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  25. V.I. Shrira, “NonlinearWaves on the Surface of a Fluid Layer with Constant Vorticity,” Dokl. Akad. Nauk USSR, 286, No. 6, 1332–1336 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dosaev.

Additional information

Original Russian Text © A.S. Dosaev, Yu.I. Troitskaya, M.I. Shishina, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, Vol. 52, No. 1, pp. 62–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosaev, A.S., Troitskaya, Y.I. & Shishina, M.I. Simulation of surface gravity waves in the Dyachenko variables on the free boundary of flow with constant vorticity. Fluid Dyn 52, 58–70 (2017). https://doi.org/10.1134/S0015462817010069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817010069

Keywords

Navigation