Skip to main content
Log in

Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Several kinetic models of hydrogen oxidization are compared for the purpose of selecting the reaction mechanism to describe the chemical interaction in numerically modeling the detonation combustion of a hydrogen-airmixture. Within the framework of the chosen kinetic model the possibility of stabilizing a detonation wave in a stoichiometric hydrogen-airmixture arriving in a plane channel at a supersonic velocity is discussed. For certain inflow Mach numbers a method for determining the shape of the channel, in which a stabilized detonation wave can be formed without energy supply, is proposed. In the case of the M0 = 5.5 combustible mixture flow past a semi-infinite symmetric plane body aligned with the flow the structure of the detached detonation wave stabilized ahead of the obstacle is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. McKenna, “Interaction between Detonation Waves and Flowfields,” AIAA J. 5, 868 (1967).

    Article  ADS  Google Scholar 

  2. A.A. Vasil’ev, V.I. Zvyagintsev, and D.G. Nalivaichenko, “Detonation Waves in a Supersonic Flow of a Reacting Mixture,” Fiz. Goreniya Vzryva 42(5), 85 (2006).

    Google Scholar 

  3. V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Initiation, Propagation, and Stabilization of Detonation Waves in a Supersonic Flow,” in: A.A. Barmin (ed.), Topical Problems of Mechanics. On the 85th Anniversary of Academician G.G. Chernyi [in Russian], Moscow Univ. Press, Moscow (2008), p. 240.

    Google Scholar 

  4. T.A. Zhuravskaya and V.A. Levin, “Investigation of Certain Techniques for Stabilizing Detonation Waves in a Supersonic Flow,” Fluid Dynamics 47(6), 793 (2012).

    Article  ADS  MATH  Google Scholar 

  5. V.A. Levin, I.S. Manuilovich, and V.V. Markov, “Excitation and Breakdown of Detonation in Gases,” Inzh.-Fiz. Zh. 83, 1174 (2010).

    Google Scholar 

  6. Yu.V. Tunik, “Numerical Modeling of Detonation Combustion of Hydrogen-Air Mixtures in a Convergent-Divergent Nozzle,” Fluid Dynamics 45(2), 264 (2010).

    Article  ADS  MATH  Google Scholar 

  7. A.V. Trotsyuk, A.N. Kudryavtsev, and M.S. Ivanov, “Numerical Investigations of Detonation Waves in Supersonic Steady Flows,” in: G. Roy et al. (eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow, p. 125 (2006).

    Google Scholar 

  8. H.Y. Fan and F.K. Lu, “Numerical Modelling of Oblique Shock and Detonation Wave Induced in a Wedged Channel,” J. Aerospace Engng. 222, 687 (2008).

    Google Scholar 

  9. N.A. Popov, “Nonequilibrium Excitation Effect on Ignition of Hydrogen-Oxygen Mixtures,” Teplofiz. Vys. Temp. 45, 296 (2007).

    Google Scholar 

  10. J. Warnatz, U. Maas, and R.W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation Springer, Berlin (2006).

    Google Scholar 

  11. A.M. Starik, N.S. Titova, A.S. Sharipov, and V.E. Kozlov, “On the Mechanism of Synthetic Gas Oxidization,” Fiz. Goreniya Vzryva 46(5), 3 (2010).

    Google Scholar 

  12. R.I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  13. T.A. Zhuravskaya, “Propagation of Detonation Waves in Channels with Obstacles,” Fluid Dynamics 42(6), 987 (2007).

    Article  ADS  MATH  Google Scholar 

  14. V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Propagation of Cellular Detonation in the Plane Channels with Obstacles,” in: Shock Waves: Proc. Symp. Vol. 1 (2007), p. 347.

    Google Scholar 

  15. B.D. Taylor, D.A. Kessler, V.N. Gamezo, and E.S. Oran, “Numerical Simulation of Hydrogen Detonations with Detailed Chemical Kinetics,” Proc. Combust. Inst. 34(2), 2009 (2013).

    Article  Google Scholar 

  16. V.P. Glushko et al. (eds.), Thermodynamic Properties of Individual Substances. Vol. 1 [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  17. S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov. A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  18. R.I. Soloukhin, “Fluctuating Gas Combustion behind a Shock Wave in a Supersonic Flow,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 5, 57 (1961).

    Google Scholar 

  19. R.I. Soloukhin, “Detonation Waves in Gases,” Usp. Fiz. Nauk 80, 525 (1963).

    Article  Google Scholar 

  20. J. Verreault, A. Higgins, and R. Stove, “Formation of Transverse Waves in Oblique Detonations,” Proc. Combust. Inst. 34(2), 1913 (2013).

    Article  Google Scholar 

  21. Vl.V. Voevodin, S.A. Zhumatii, S.I. Sobolev, A.S. Antonov, P.A. Bryzgalov, D.A. Nikitenko, K.S. Stefanov, and Vad.V. Voevodin, “Practice of the Lomonosov Supercomputer,” Otkrytye Sistemy No. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Zhuravskaya.

Additional information

Original Russian Text © T.A. Zhuravskaya, V.A. Levin, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 2, pp. 117–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravskaya, T.A., Levin, V.A. Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel. Fluid Dyn 50, 283–293 (2015). https://doi.org/10.1134/S001546281502012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546281502012X

Keywords

Navigation