Skip to main content
Log in

Lava spreading during volcanic eruptions on the condition of partial slip along the underlying surface

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the axisymmetric approximation the problem of spreading lava as an incompressible constant-viscosity liquid over a flat horizontal surface is solved. Instead of the classical no-slip condition, a condition of partial lava slip along the underlying surface is used: at the surface the velocity is assumed to be a power function of friction. In the thin-layer approximation, for the problem of slow liquid spreading an asymptotic self-similar solution is constructed on the assumptions of partial slip along the underlying surface and a power time dependence of the flow rate. The same problem is solved in the complete formulation numerically. It is shown that the numerical and asymptotic solutions are in good agreement. It is established that with account for the slip effect the lava propagation velocity may be substantially higher than for the no-slip condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Griffiths, “The Dynamics of Lava Flows,” Annu. Rev. Fluid Mech. 32, 477–518 (2000).

    Article  ADS  Google Scholar 

  2. N.V. Koronovskii, General Geology: Textbook (KDU, Moscow, 2006) [in Russian].

    Google Scholar 

  3. H.E. Huppert, J.B. Shepherd, H. Sigurdsson, and R.S.J. Sparks, “On Lava Dome Growth, with Application to the 1979 Lava Extrusion of the Soufriere of St._Vincent,” J. Volc. Geotherm. Res. 14, 199–222 (1982).

    Article  ADS  Google Scholar 

  4. N.J. Balmforth, A.S. Burbidge, R.V. Craster, et al., “Visco-Plastic Models of Isothermal Lava Domes,” J. Fluid Mech. 403, 37–65 (2000).

    Article  ADS  MATH  Google Scholar 

  5. R.W. Griffiths and J.H. Fink, “Effects of Surface Cooling on the Spreading of Lava Flows and Domes,” J. Fluid Mech. 252, 667–702 (1993).

    Article  ADS  Google Scholar 

  6. W. Zhu, D.K. Smith, and L.G.J. Montesi, “Effects of Regional Slope on Viscous Flows: a Preliminary Study of Lava Terrace Emplacement at Submarine Volcanic Rift Zones,” J. Volcan. Geotherm. Res. 119, 145–159 (2002).

    Article  ADS  Google Scholar 

  7. N.J. Balmforth, R.V. Craster, and R. Sassi, “Dynamics of Cooling Viscoplastic Domes,” J. Fluid Mech. 499, 149–182 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. M. Dragoni, I. Borsari, and A. Tallarico, “A Model for the Shape of Lava Flow Fronts,” J. Geophys. Res. 110, B09203 (2005).

    ADS  Google Scholar 

  9. A.A. Osiptsov, “A Self-Similar Solution to the Problem of Lava Dome Growth on an Arbitrary Conical Surface,” Fluid Dynamics 39(1), 47–60 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. A.A. Osiptsov, “Non-Isothermal Lava Flows over a Conical Surface,” Fluid Dynamics 40(2), 221–232 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A.A. Osiptsov, “Three-Dimensional Isothermal Lava Flows over a Non-Axisymmetric Conical Surface,” Fluid Dynamics 41(2), 198–210 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. C. Michaut, D. Baratoux, and C. Thorey, “Magmatic Intrusions and Deglaciation at Mid-Latitude in the Northern Plains of Mars,” Icarus 225(1), 602–613 (2013).

    Article  ADS  Google Scholar 

  13. A. Costa, G. Wadge, and O. Melnik, “Cyclic Extrusion of a Lava Dome Based on a Stick-Slip Mechanism,” Earth Planet. Sci. Lett. 337–338, 39–46 (2012).

    Article  Google Scholar 

  14. H.E. Huppert, “The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents over a Rigid Horizontal Surface,” J. Fluid Mech. 21, 43–58 (1982).

    Article  ADS  Google Scholar 

  15. S.S. Grigoryan and Ya.V. Babkin, “Self-Similar Solutions of the Equations for Shallow-Water Flows in Large Areas,” Dokl. Akad. Nauk 355(5), 626–627 (1997).

    Google Scholar 

  16. T. Sochi, “Slip at Fluid-Solid Interface,” Polymer Rev. 51(4), 309–340 (2011).

    Article  Google Scholar 

  17. L.M. Hocking and A.D. Rivers, “The Spreading of a Drop by Capillary Action,” J. Fluid Mech. 121, 425–442 (1982).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. L.M. Hocking, “Rival Contact-Angle Models and the Spreading of Drops,” J. Fluid Mech. 239, 671–681 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. A. Oron, S.H. Davis, and S.G. Bankoff, “Long-Scale Evolution of Thin Liquid Films,” Rev. Modern Phys. 69(3), 931–980 (1997).

    Article  ADS  Google Scholar 

  20. L.M. Hocking and S.H. Davis, “Inertial Effects in Time-Dependent Motion of Thin Films and Drops,” J. Fluid Mech. 467, 1–17 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. S.N. Reznik and A.L. Yarin, “Spreading of an Axisymmetric Viscous Drop Due to Gravity and Capillarity on a dry Horizontal Wall,” Int. J. Multiphase Flow 28, 1437–1457 (2002).

    Article  MATH  Google Scholar 

  22. E.F. Khairetdinov, “Problem of a Rapidly Moving Spatial Landslide,” Dokl. Akad. Nauk 406(6), 760–764 (2006).

    MathSciNet  Google Scholar 

  23. C.A. Perazzo and J. Gratton, “Asymptotic Regimes of Ridge and Rift Formation in a Thin Viscous Sheet Model, Phys. Fluids 20(4), 043103 (2008).

    Article  ADS  Google Scholar 

  24. A.I. Ageev, “Spreading of a Liquid Film over a Superhydrophobic Surface,” in Trans. of the Conference-Contest of Young Scientists. 12–14 Oct. 2011, Ed. by G.G. Chernii and V.A. Samsonov (Moscow University Press, Moscow, 2013) [in Russian], pp. 90–95.

    Google Scholar 

  25. A.I. Ageev and A.N. Osiptsov, “Self-Similar Regimes of Liquid-Layer Spreading along a Superhydrophobic Surface,” Fluid Dynamics 49(3), 330–342 (2014).

    Article  MATH  Google Scholar 

  26. A. Diez, L. Kondic, and A. Bertozzi, “Global Models for Moving Contact Lines,” Phys. Rev. E. 63(1), 011208 (2000).

    Article  ADS  Google Scholar 

  27. V. Maderich, I. Brovchenko, and K.T. Jung, “Oil Spreading in Instantaneous and Continuous Spills on Rotating Earth,” Environ. Fluid Mech. 12(4), 361–378 (2012).

    Article  Google Scholar 

  28. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publish. Corporat., New York, 1980).

    MATH  Google Scholar 

  29. J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin, Heidelberg, 2002).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vedeneeva.

Additional information

Original Russian Text © E.A. Vedeneeva, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 2, pp. 27–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedeneeva, E.A. Lava spreading during volcanic eruptions on the condition of partial slip along the underlying surface. Fluid Dyn 50, 203–214 (2015). https://doi.org/10.1134/S0015462815020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815020040

Keywords

Navigation