Skip to main content
Log in

Modeling turbulent boundary layer noise in the presence of sound absorbing devices

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of an experimental investigation of the natural noise of flow past two versions of sound absorbing devices are presented. On the basis of the known theoretical studies and the numerical calculations of the turbulent boundary layer over a rough surface a method for describing the noise of the above-mentioned devices is developed. The tests made using large eddy simulation show good agreement between the calculated and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu.D. Khaletskii and R.A. Shitov, “Acoustic Efficiency of Combined Suppressors of the Fan Noise of Bypass Turbojet Engines,” Tr. TsIAM No. 1347, p. 39 (2010).

    Google Scholar 

  2. J. Premo, J. Breard, and J. Lan, “Prediction of the Inlet Splice Effects from the QTD2 Static Test,” AIAA Paper No. 3544 (2007).

    Google Scholar 

  3. R. Tayong, T. Dupont, and P. Leclaire, “Sound Absorption of a Micro-Perforated Plate Backed by a Porous Material under High Sound Excitation: Measurement and Prediction,” Int. J. Engineering Techn. 2, 281 (2013).

    Article  Google Scholar 

  4. “Aircraft Trim Panel with Integrated Adjustable Acoustic Properties,” US Patent 8079443 B2 (2011).

  5. C.K.W. Tam, “Intensity, Spectrum, and Directivity of Turbulent Boundary Layer Noise,” J. Acoust. Soc. Am. 57, 25 (1975).

    Article  ADS  MATH  Google Scholar 

  6. J. Berland and X. Gloerfelt, “Investigation of Noise Radiation from a Turbulent Boundary Layer,” AIAA Paper No. 2802 (2008).

    Google Scholar 

  7. X. Gloerfelt and J. Berland, “Direct Computation of Turbulent Boundary Layer Noise,” AIAA Paper No. 3401 (2009).

    Google Scholar 

  8. D.R. Boldman and P.F. Brinich, “Skin Friction on a Flat Perforated Acoustic Liner,” AIAA J. 14, 1656 (1976).

    Article  ADS  Google Scholar 

  9. M.K. Drouin, J.M. Gallman, and R.F. Olsen, “Sound Level Effect on Perforated Panel Boundary Layer Growth,” AIAA Paper No. 2411 (2006).

    Google Scholar 

  10. Yu Liu, A.P. Dowling, and H.-C. Shin, “Effects of Surface Roughness on Airframe Noise,” AIAA Paper No. 2510 (2006).

    Google Scholar 

  11. D.L. Grissom, B. Smith, and W.J. Devenport, “Rough-Wall Boundary Layer Noise: An Experimental Investigation,” AIAA Paper No. 3418 (2007).

    Google Scholar 

  12. B. Smith, N. Alexander, W.J. Devenport, S. Glegg, and D.L. Grissom, “The Relationship between Roughness Noise and the Near Field Pressure Spectrum,” AIAA Paper No. 2904 (2008).

    Google Scholar 

  13. S. Glegg and W. Devenport, “The Far-Field Sound from Rough-Wall Boundary Layers,” Proc. Royal Soc. A 465(2106), 1717 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. W. Blake, K.-H. Kim, M. Goody, M. Wang, W.J. Devenport, and S.A.L. Glegg, “Investigation of Roughness-Generated TBL Sound Using Coupled Physical-Computational Experiments in Conjunction with Theoretical Development,” Conf. “Acoustic 08-Paris” (2008).

    Google Scholar 

  15. M.B. Rasnick, “The Noise of a Boundary Layer Flowing over Discrete Roughness Elements,” Thesis Master Sci. Aerospace Engineering (2010).

    Google Scholar 

  16. A.N. Gulyaev, V.E. Kozlov, and A.N. Sekundov, “A Universal One-Equation Model for Turbulent Viscosity,” Fluid Dynamics 28(4), 485 (1993).

    Article  ADS  MATH  Google Scholar 

  17. A.B. Lebedev, D.A. Lyubimov, and A.N. Sekundov, “Certain Problems of Describing Complicated Turbulent Flows Using Two-Equation Models,” in: A.A. Barmin (ed.), Problems of Modern Mechanics. On the 85 Birthday of Academician G.G. Chernyi [in Russian]. Moscow Univ. Press, Moscow (2008).

    Google Scholar 

  18. H. Schlichting, Boundary Layer Theory, McGraw Hill, New York (1979).

    MATH  Google Scholar 

  19. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1987).

    MATH  Google Scholar 

  20. G.N. Abramovich, T.A. Girshovich, S.Yu. Krasheninnikov, A.N. Sekundov, and I.P. Smirnova, Theory of Turbulent Jets [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  21. F. Nicoud and F. Ducros, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor,” Flow, Turbulence Combust. 62, 183 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mironov.

Additional information

Original Russian Text © V.P. Maslov, A.K. Mironov, K.N. Pichkov, A.N. Sekundov, S.A. Cheprasov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 1, pp. 44–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P., Mironov, A.K., Pichkov, K.N. et al. Modeling turbulent boundary layer noise in the presence of sound absorbing devices. Fluid Dyn 50, 40–49 (2015). https://doi.org/10.1134/S0015462815010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815010056

Keywords

Navigation