Skip to main content
Log in

Dynamics of separation of a single drop in air

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The processes of formation of alcohol and water drops, as well as formation of small fragments—satellites, are traced using the high-speed filming. The trajectory of a water drop satellite is nonmonotonic, at first the satellite moves upward against the gravity force, reaches the oscillating residual fluid at the nozzle exit, and then starts to move down. From the satellite, a microdroplet is ejected, which bounces off the residual fluid at the nozzle, returns back to the satellite and merges. In the case of an alcohol drop, no accompanying microdroplet is formed, and the satellite follows a nearballistic trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Eggers and E. Villermaux, “Physics of Liquid Jets,” Rep. Progr. Phys. 71(036601), 1–79 (2008).

    Google Scholar 

  2. N. Dietrich, N. Mayoufi, S. Poncin, and H.-Z. Li, “Experimental Investigation of Bubble and Drop Formation at Submerged Orifices,” Chemic. Papers 67(3), 313–325 (2013).

    Article  Google Scholar 

  3. B. Chang, G. Nave, and S. Jung, “Drop Formation from a Wettable Nozzle,” Commun. Nonlinear Sci. Numer. Simulat. 17(5), 2045–2051 (2012).

    Article  ADS  Google Scholar 

  4. E.V. Stepanova and Yu.D. Chashechkin, “Marker Transport in a Composite Vortex,” Fluid Dynamics 45(6), 843–858 (2010).

    Article  MATH  ADS  Google Scholar 

  5. T. Young, “An Essay on the Cohesion of Fluids,” Phil. Trans. Roy. Soc. London 95, 65–87 (1805).

    Article  Google Scholar 

  6. P.-S. Laplace, Mécanique Céleste. V.4 (Paris, 1805).

    Google Scholar 

  7. T. Tate, “On the Magnitude of a Drop of Liquid Formed under Different Circumstances,” Phil. Mag. Ser. 4 27(181), 176–180 (1864).

    Google Scholar 

  8. J. Eggers, “Nonlinear Dynamics and Breakup of Free-Surface Flows,” Rev. Modern Phys. 69(3), 865–929 (1997).

    Article  MATH  ADS  Google Scholar 

  9. J. Eggers, “Drop Formation—An Overview,” ZAMM 85(6), 400–410 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. J.W.S. Rayleigh, The Theory of Sound. V. 2 (MacMillan, 1894)

    Google Scholar 

  11. A.A. Novikov, “Nonlinear Capillary Waves on a Viscous-Fluid Jet Surface,” Fluid Dynamics 12(2), 315–318 (1977).

    Article  ADS  Google Scholar 

  12. D. Bogy, “Drop Formation in a Circular Liquid Jet,” Annu. Rev. Fluid Mech. 11, 207–228 (1979).

    Article  ADS  Google Scholar 

  13. F. Savart, “Mémoire sur la Constitution des Veines Liquids Lancees par des Orifices Circulaires en Mince Paroi,” Annu. Chim. Phys. 53, 337–386 (1833).

    Google Scholar 

  14. P.K. Notz, A.U. Chen, and O.A. Basaren, “Satellite Drops: Unexpected Dynamics and Change of Scaling During Pinch-Off,” Phys. Fluids 13(3), 549–552 (2001).

    Article  ADS  Google Scholar 

  15. Yu.D. Chashechkin and V.E. Prokhorov, “A Splash Fine Structure of Drop Impact on a Free Surface of a Fluid at Rest,” Dokl. Ross. Akad. Nauk 436(6), 768–773 (2011).

    Google Scholar 

  16. N.E. Kochin, N.A. Kibel’, and N.V. Roze, Theoretical Hydromechanics. V. 1 [in Russian] (Fizmatlit, Moscow, 1963).

    Google Scholar 

  17. A. Prosperetti and H.N. Oguz, “The Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain,” Annu. Rev. Fluid Mech. 25, 577–602 (1993).

    Article  ADS  Google Scholar 

  18. J. Lekner, “Electrostatics of Two Charged Conducting Spheres,” Proc. Roy. Soc. A 468, 2829–2848 (2012).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Prokhorov.

Additional information

Original Russian Text © V.E. Prokhorov, Yu.D. Chashechkin, 2014, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2014, Vol. 49, No. 4, pp. 109–118.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, V.E., Chashechkin, Y.D. Dynamics of separation of a single drop in air. Fluid Dyn 49, 515–523 (2014). https://doi.org/10.1134/S0015462814040115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462814040115

Keywords

Navigation