Skip to main content
Log in

Influence of photoperiod on development and maturation of Macrolophus pygmaeus (Hemiptera, Miridae)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The effects of day length on development and reproductive maturation of zoophytophagous bug Macrolophus pygmaeus (= M. nubilis) were investigated under laboratory conditions using two strains originated from the environs of Rome, Italy (41.75°N, 12.30°E and 41.95°N., 12.80°E) and Sochi, Krasnodar Territory, Russia (43.9°N, 39.3°E). The insects were kept under day length of either 10 or 16 h at a constant temperature of 20°C. Nymphs and adults were fed on the grain moth eggs. Embryonic development lasted 18–20 days, nymphal development, 25–30 days, and reproductive maturation of females, 4–6 days. The short day length (10 h) resulted in 1–2-day prolongation of nymphal development and a longer maturation time in individuals from both strains, whereas the duration of embryo development was independent of photoperiod. Under both photoperiods, males developed faster than females. Under the short day length, females of the Rome strain matured markedly faster than those of the Sochi strain. Faster development under low temperature and stronger tendency to delay the reproductive maturation observed in the Sochi strain could be explained by a relatively fast (when compared with Rome) autumnal decrease in temperature. The mechanism and adaptive value of the long-day acceleration of development are not yet clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, M. and Ewiess, M.A., “Photoperiodic and Temperature Effects on Rate of Development and Diapause in the Green Stink Bug, Nezara viridula L. (Heteroptera: Pentatomidae),” Z. Angew. Entomol. 84 (3), 256–264 (1977).

    Google Scholar 

  2. Boman, S., Grapputo, A., Lindström, L., Lyytinen, A., and Mappes, J., “Quantitative Genetic Approach for Assessing Invasiveness: Geographic and Genetic Variation in Life-History Traits,” Biol. Invas. 10 (7), 1135–1145 (2008).

    Article  Google Scholar 

  3. Boyarin, V.V., “Using of Macrolophus in Greenhouses,” Zashch. Karant. Rast. 11, 20 (2000).

    Google Scholar 

  4. Brent, C.S. and Spurgeon, D.W., “Diapause Response of Laboratory Reared and Native Lygus hesperus Knight (Hemiptera: Miridae),” Environ. Entomol. 40 (2), 455–461 (2011).

    Article  Google Scholar 

  5. Castañé, C. and Zapata, R., “Rearing the Predatory Bug Macrolophus caliginosus on a Meat-Based Diet,” Biol. Contr. 34 (1), 66–72 (2005).

    Article  Google Scholar 

  6. Castañé, C., Alomar, Ò., Riudavets, J., and Gemeno, C., “Reproductive Biology of the Predator Macrolophus caliginosus: Effect of Age on Sexual Maturation and Mating,” Biol. Contr. 43 (3), 278–286 (2007).

    Article  Google Scholar 

  7. Chernyshev, V.B., Insect Ecology (MGU, Moscow, 1996) [in Russian].

    Google Scholar 

  8. Conradi-Larsen, E.M. and Sømme, L., “Notes on the Biology of Dolycoris baccarum L. (Heteroptera, Pentatomidae),” Norsk Entomol. Tidsskr. 20 (2), 245–247 (1973).

    Google Scholar 

  9. Danilevsky, A.S., Photoperiodism and Seasonal Development of Insects (Oliver and Boyd, Edinburgh, 1965).

    Google Scholar 

  10. Denlinger, D.L., “Regulation of Diapause,” Ann. Rev. Entomol. 47, 93–122 (2002).

    Article  CAS  Google Scholar 

  11. Facon, B., Pointier, J.P., Jarne, P., Sarda, V., and David, P., “High Genetic Variance in Life-History Strategies within Invasive Populations by Way of Multiple Introductions,” Current Biol. 18 (5), 363–367 (2008).

    Article  CAS  Google Scholar 

  12. Fauvel, G., Malausa, J.C., and Kaspar, B., “Étude en Laboratoire des Principales Caracteristiques Biologiques de Macrolophus caliginosus (Heteroptera: Miridae),” Entomophaga 32 (5), 529–543 (1987).

    Article  Google Scholar 

  13. Gillespie, D.R. and Quiring, D.M.J., “Diapause Induction under Greenhouse Conditions in Two Populations of Dicyphus hesperus (Hemiptera: Miridae),” Biocontr. Sci. Techn. 15 (6), 571–583 (2005).

    Article  Google Scholar 

  14. Hamdan, A.J., “Effect of Photoperiod on the Life History of the Predatory Bug, Macrolophus caliginosus Wagner (Hemiptera: Miridae),” An-Najah Univ. J. Res. 20, 135–146 (2006).

    Google Scholar 

  15. Hart, A.J., Tullett, A.G., Bale, J.S., and Walters, K.F.A., “Effects of Temperature on the Establishment Potential in the UK of the Non-Native Glasshouse Biocontrol Agent Macrolophus caliginosus,” Physiol. Entomol. 27 (2), 112–123 (2002).

    Article  Google Scholar 

  16. Honek, A., “Geographical Variation in Thermal Requirements for Insect Development,” Eur. J. Entomol. 93 (3), 303–312 (1996).

    Google Scholar 

  17. Kerzhner, I.M. and Josifov, M., Catalogue of the Heteroptera of the Palaearctic Region. Vol. 3. Cimicomorpha II. Miridae (The Netherlands Entomological Society, Wageningen, 1999).

    Google Scholar 

  18. Krasavina, L.P., Kozlova, E.G., and Borodavko, N.B., “Using of the Predatory Bug Macrolophus nubilis H. S. (Hemiptera, Miridae) on Ornamental Plants in Greenhouses,” Gavrish 3, 28–30 (2010).

    Google Scholar 

  19. Lopatina, E.B., Balashov, S.V., and Kipyatkov, V.E., “First Demonstration of the Influence of Photoperiod on the Thermal Requirements for Development in Insects and in Particular the Linden-Bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae),” Eur. J. Entomol. 104 (1), 23–31 (2007).

    Article  Google Scholar 

  20. Lundgren, J.G., “Reproductive Ecology of Predaceous Heteroptera,” Biol. Contr. 59 (1), 37–52 (2011).

    Article  Google Scholar 

  21. Martinez-Cascales, J.I., Cenis, J.L., Cassis, G., and Sanchez, J.A., “Species Identity of Macrolophus melanotoma (Costa 1853) and Macrolophus pygmaeus (Rambur 1839) (Insecta: Heteroptera: Miridae) Based on Morphological and Molecular Data and Bionomic Implications,” Insect Syst. Evol. 37 (4), 385–404 (2006).

    Article  Google Scholar 

  22. Messelink, G.J. and Janssen, A., “Increased Control of Thrips and Aphids in Greenhouses with Two Species of Generalist Predatory Bugs Involved in Intraguild Predation,” Biol. Contr. 79 (1), 1–7 (2014).

    Article  Google Scholar 

  23. Messelink, G.J., Bennison, J., Alomar, O., Ingegno, B.L., Tavella, L., et al., “Approaches to Conserving Natural Enemy Populations in Greenhouse Crops: Current Methods and Future Prospects,” BioControl 59 (4), 377–393 (2014).

    Article  Google Scholar 

  24. Mollá, O., Biondi, A., Alonso-Valiente, M., and Urbaneja A., “A Comparative Life History Study of Two Mirid Bugs Preying on Tuta absoluta and Ephestia kuehniella Eggs on Tomato Crops: Implications for Biological Control,” BioControl 59 (2), 175–183 (2014).

    Article  Google Scholar 

  25. Musolin, D.L. and Ito, K., “Photoperiodic and Temperature Control of Nymphal Development and Induction of Reproductive Diapause in Two Predatory Orius Bugs: Interspecific and Geographic Differences,” Physiol. Entomol. 33 (4), 291–301 (2008).

    Article  Google Scholar 

  26. Musolin, D.L. and Numata, H., “Photoperiodic and Temperature Control of Diapause Induction and Colour Change in the Southern Green Stink Bug Nezara viridula,” Physiol. Entomol. 28 (2), 65–74 (2003).

    Article  Google Scholar 

  27. Musolin, D.L. and Saulich, A.K., “Photoperiodic Control of Nymphal Growth in True Bugs (Heteroptera),” Zool. Zh. 76 (5), 530–542 (1997).[Entomol. Rev. 77 (6), 768–780 (1997)]

    Google Scholar 

  28. Musolin, D.L. and Saulich, A.K., “Responses of Insects to the Current Climate Changes: from Physiology and Behavior to Range Shifts,” Entomol. Obozr. 91 (1), 3–35 (2012) [Entomol. Rev., 92 (7), 715–740 (2012)]

    Google Scholar 

  29. Musolin, D.L., Tsytsulina, K., and Ito, K., “Photoperiodic and Temperature Control of Reproductive Diapause Induction in the Predatory Bug Orius strigicollis (Heteroptera: Anthocoridae) and its Implications for Biological Control,” Biol. Control 31 (1), 91–98 (2004).

    Article  Google Scholar 

  30. Nakamura, K., “Effect of Photoperiod on Development and Growth in a Pentatomid Bug, Dolycoris baccarum,” Entomol. Sci. 6 (1), 11–16 (2003).

    Article  Google Scholar 

  31. Pazyuk, I.M., Musolin, D.L., and Reznik, S.Ya., “Geographic Variation in Thermal and Photoperiodic Effects on Development of Zoophytophagous Plant Bug Nesidiocoris tenuis,” J. Appl. Entomol. 138 (1), 36–44 (2014).

    Article  Google Scholar 

  32. Perdikis, D. and Lykouressis, D., “Effects of Various Items, Host Plants, and Temperatures on the Development and Survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae),” Biol. Contr. 17 (1), 55–60 (2000).

    Article  Google Scholar 

  33. Perdikis, D.C., Lykouressis, D.P., and Economou, L.P., “Influence of Light-Dark phase, Host Plant, Temperature, and their Interactions on the Predation Rate in an Insect Predator,” Environ. Entomol. 33 (5), 1137–1144 (2004).

    Article  Google Scholar 

  34. Puchkov, V.G., “Species of the Genus Macrolophus Fieber, 1858 (Heteroptera, Miridae) of the Fauna of the USSR,” Dokl. Akad. Nauk Ukr. SSR. Seria B. Geol., Khim. Biol. Nauki 9, 854–857 (1978).

    Google Scholar 

  35. Sanchez, J.A., Spina, M.L., and Perera, O.P., “Analysis of the Population Structure of Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) in the Palaearctic Region Using Microsatellite Markers,” Ecol. Evol. 2 (12), 3145–3159 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saulich, A.Kh., Seasonal Development of Insects and the Possibilities of their Dispersal (Izd. SPbGU, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  37. Saulich, A.H. and Musolin, D.L., “Four Seasons: Diversity of Seasonal Adaptations and Ecological Mechanisms Controlling Seasonal Development in True Bugs (Heteroptera) in the Temperate Climate,” Proc. Biol. Inst. St. Petersburg State Univ. 53, 25–106 (2007).

    Google Scholar 

  38. Saulich, A.Kh. and Volkovich, T.A., Ecology of Photoperiodism in Insects (Izd. SPbGU, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  39. Saunders, D.S., Steel, C.G.H., Vafopoulou, X., and Lewis, R.D., Insect Clocks (Elsevier, Amsterdam, 2002).

    Google Scholar 

  40. Tauber M.J., Tauber, C.A., and Masaki, S., Seasonal Adaptations of Insects (Oxford Univ., New York, 1986).

    Google Scholar 

  41. Tyshchenko, V.P., Physiology of Insect Photoperiodism (Trudy Vses. Entomol. O-va 59), (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  42. Zaslavski, V.A, Insect Development: Photoperiodic and Temperature Control (Springer-Verlag, New York and Berlin, 1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pazyuk.

Additional information

Original Russian Text © I.M. Pazyuk, S.Ya. Reznik, 2016, published in Zoologicheskii Zhurnal, 2016, Vol. 95, No. 4, pp. 429–434.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazyuk, I.M., Reznik, S.Y. Influence of photoperiod on development and maturation of Macrolophus pygmaeus (Hemiptera, Miridae). Entmol. Rev. 96, 274–279 (2016). https://doi.org/10.1134/S0013873816030039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873816030039

Navigation