Skip to main content
Log in

Principles of organization of polistinae (Hymenoptera, Vespidae) population

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The paper describes some invariant relations of the Polistinae population structure, including resistance to abiotic and biotic factors that occurs against the background of the hierarchy of biological systems and increasing autonomy of their functioning. A decrease in the dependence on the hostile environment is shown to be due to the activity of foundresses and workers adjusting to external rhythms, developing specialized responses to predators and parasites (predictable external noise of biotic nature), and creating new information. The population organization of Polistinae wasps is considered in the framework of Anokhin’s theory of functional systems and systemogenesis. There are specific processes in the population that unite individual colonies and their reproduction; they are accompanied by the formation of an advanced feedback and functional systems. Systemic processes can be simultaneously regarded as “adaptation” (reflecting the organization of environmental elements) and as “adaptiveness” (reflecting the organization of the activity of intra-colony processes and the organization of reproduction). The organization of the colony activity and reproduction in functional systems reflects the future survival rather than the preceding phenomena and events. The behavior of individuals in a colony is determined not only by the effects of abiotic and biotic factors (via transformation of cues into behavioral programs), but also by previous adaptations (stored in the “memory” as images of still absent events). General progress, limited or partial progress, and narrow specialization in the organization of polistine colonies and populations are considered using the examples of morphofunctional, environmental, energy and information criteria. The emphasis on invariant relations makes it possible to more fully describe biological systems in terms of such general categories as isomorphism, homeostasis or self-organization, and also enables us to use more effectively the theory of general functional systems in studying social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anokhin, K.V., “Systemogenesis of Behavior: Transition between Development and Learning,” in Abstracts of Papers, the Fourth International Conference on Cognitive Sciences, Tomsk, Russia, 22–26 June 2010 (Tomsk, 2010), pp. 140–141.

    Google Scholar 

  2. Anokhin, K.V., Burtsev, M.S., Zaraiskaya, I.Yu., The Animat Brain Project: Development of a Model of Adaptive Behavior Based on the Theory of Functional Systems (2003), http://wsni2003.narod.ru/Papers/Anokhin.htm [in Russian].

    Google Scholar 

  3. Anokhin, P.K., “The Theory of the Functional System,” Uspekhi Fiziol. Nauk 1 (1), 19–54 (1970).

    Google Scholar 

  4. Anokhin, P.K., “The Main Problems of the General Theory of Functional Systems,” in Principles of Systemic Organization of Functions (Nauka, Moscow, 1973), pp. 5–61 [in Russian].

    Google Scholar 

  5. Anokhin, P.K., “Philosophical Aspects of the Theory of the Functional System,” in Anokhin, P.K., Selected Works (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  6. Armand, A.D., Self-Organization and Self-Regulation of Geographic Systems (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  7. Armand, A.D., The Gaia Experiment: The Problem of the Living Earth (Sirin Sadkhana, Moscow, 2001) [in Russian].

    Google Scholar 

  8. Boldachev, A.V., Novelties: Argument in the Framework of the Evolutionary Paradigm (St. Petersburg State Univ., St. Petersburg, 2007) [in Russian].

    Google Scholar 

  9. Bouwma, A.M., Howard, K.J., and Jeanne, R.L., “Rates of Predation by Scouting-and-Recruiting Ants on the Brood of a Swarm-Founding Wasp in Costa Rica,” Biotropica 39 (39), 719–724 (2007).

    Article  Google Scholar 

  10. Burtsev, M.S., Formation of Hierarchy of Goals in the Artificial Evolution Model (2002), http://www.keldysh.ru/pages/mrbur-web/publ/ni2002.html [in Russian].

    Google Scholar 

  11. Camazine, S., Deneubourg, J.-L., Franks, N.R., et al., Self-Organization in Biological Systems (Princeton Univ., Princeton, 2001).

    Google Scholar 

  12. Canevazzi, N.C.S. and Noll, F.B., “Environmental Factors Influencing Foraging Activity in the Social Wasp Polybia paulista (Hymenoptera: Vespidae: Epiponini),” Psyche 2011, 1–8 (2011), doi:10.1155/2011/542487.

    Article  Google Scholar 

  13. Carpenter, J.M., “Biogeographic Patterns in the Vespidae (Hymenoptera): Two Views of Africa and South America,” in Biological Relationships between Africa and South America, Ed. by P. Goldblatt (Yale Univ., New Haven, 1993), pp. 139–155.

    Google Scholar 

  14. Carpenter J.M., “Synonymy of the Genus Marimbonda Richards, 1978, with Leipomeles Möbius, 1856 (Hymenoptera: Vespidae; Polistinae), and a New Key to the Genera of Paper Wasps of the New World,” Amer. Mus. Novit. 3465, 1–16 (2004).

    Article  Google Scholar 

  15. Cruz, J.D., Giannotti, E., Santos, G.M.M., et al., “Daily Activity and Resources Collection by the Swarm-Founding Wasp Angiopolybia pallens (Hymenoptera: Vespidae),” Sociobiology 47, 829–842 (2006).

    Google Scholar 

  16. D’Adamo, P. and Lozada, M., “Cognitive Plasticity in Foraging Vespula germanica Wasps,” J. Insect Sci. 11 (11), 1–11 (2011).

    Article  Google Scholar 

  17. Dlussky, G.M., “The Temperature Regime in Nests of Some Species and the Ways of Evolution of Thermoregulation in Ants of the Genus Formica,” in Physiological and Population Ecology of Animals, Issue 6/8 (Saratov, 1980), pp. 13–36 [in Russian].

    Google Scholar 

  18. Elisei, T., Junior, C.R., Guimarães, D.L., and Prezoto, F., “Foraging Activity and Nesting of Swarm-Founding Wasp Synoeca cyanea (Hymenoptera: Vespidae, Polistinae),” Sociobiology 46 (46), 317–327 (2005).

    Google Scholar 

  19. Firman, L.A. and Rusina, L.Yu., “Phenotypic Diversity of the Males of Polistes dominula (Christ) (Hymenoptera, Vespidae),” Prirod. Alm. B?ol. Nauki 16, 152–162 (2011).

    Google Scholar 

  20. Firman, L.A. and Rusina, L.Yu., “Duration of Development of Males in Colonies of Polistes dominula (Christ) (Hymenoptera, Vespidae: Polistinae) in the South of Ukraine,” Entomol. Obozr. 89 (89), 486–492 (2013) [Entomol. Rev. 93 (93), 1116–1120 (2013)].

    Google Scholar 

  21. Gadagkar, R., “Belonogaster, Mischocyttarus, Parapolybia, and Independent-Founding Ropalidia,” in The Biology of Social Wasps, Ed. by K.G. Ross and R.W. Matthews (Cornell Univ., Ithaca, 1991), pp. 149–190.

    Google Scholar 

  22. Ghilarov, M.S., “Evolution of Insects in Transition to Passive Dispersal and the Feedback Principle in Phylogeny,” Zool. Zh. 45 (45), 3–23 (1966).

    Google Scholar 

  23. Ghilarov, M.S., “Trends in Evolution of Passively Dispersing Insects and the Feedback Control in Phylogenesis,” Z. Zool. Syst. Evol. 7 (7), 1–18 (1969).

    Article  Google Scholar 

  24. Ghilarov, M.S., “Common Directions in the Evolution of Insects and Higher Vertebrates,” Zool. Zh. 54 (54), 822–831 (1975).

    Google Scholar 

  25. Ghilarov, M.S., “Feedback and Directedness of Evolutionary Process,” Vestnik Akad. Nauk SSSR, No. 8, 68–76 (1976).

    Google Scholar 

  26. Giannotti, E. and Machado, V.L.L., “The Seasonal Variation of Brood Stages Duration of Polistes lanio (Fabricius, 1775) (Hymenoptera, Vespidae),” Naturalia Sao Paulo 19, 97–102 (1994).

    Google Scholar 

  27. Giannotti, E., Prezoto, F., and Machado, V.L.L., “Foraging Activity of Polistes lanio lanio (Fabr.) (Hymenoptera, Vespidae),” Annals Soc. Entomol. Brasil 24, 455–463 (1995).

    Google Scholar 

  28. Greiner, B., “Visual Adaptations in the Night-Active Wasp Apoica pallens,” J. Comp. Neurobiol. 495, 255–262 (2006).

    Article  Google Scholar 

  29. Grinfeld, E.K., The Origin and Development of Anthophily in Insects (Leningrad State Univ., Leningrad, 1978) [in Russian].

    Google Scholar 

  30. Haken, H., Information and Self-Organization: A Macroscopic Approach to Complex Systems (Springer, Berlin, 1988; Mir, Moscow, 1991) [in Russian].

    Book  Google Scholar 

  31. Hassell, M.P., “Host–Parasitoid Population Dynamics,” J. Anim. Ecol. 69, 534–566 (2000).

    Article  Google Scholar 

  32. Hassell, M.P. and May, R.M., “Stability in Insect Host- Parasite Models,” J. Anim. Ecol. 42, 693–726 (1973).

    Article  Google Scholar 

  33. Hastings, M.D., Queller, D.C., Eischen, F., and Strassmann, J.E., “Kin Selection, Relatedness, and Worker Control of Reproduction in a Large-Colony Epiponine Wasp, Brachygastra mellifica,” Behav. Ecol. 9, 573–581 (1998).

    Article  Google Scholar 

  34. Henshaw, M.T., Strassmann, J.E., and Queller, D.C., “The Independent Origin of a Queen Number Bottleneck that Promotes Cooperation in the African Swarm-Founding Wasp, Polybioides tabidus,” Behav. Ecol. Sociobiol. 48, 478–483 (2000).

    Article  Google Scholar 

  35. Holling, C.S., “The Analysis of Complex Population Processes,” Canad. Entomol. 96, 335–347 (1964).

    Article  Google Scholar 

  36. Hughes, C.R., Queller, D.C., Strassmann, J.E., et al., “The Maintenance of High Genetic Relatedness in Multi-Queen Colonies of Social Wasps,” in Queen Number and Sociality in Insects, Ed. by L. Keller (Oxford Univ., Oxford, 1993), pp. 153–170.

    Google Scholar 

  37. Hughes, D.P., “The Extended Phenotype within the Colony and How It Obscures Social Communication,” in Sociobiology of Communication: An Interdisciplinary Perspective, Ed. by P. d’Ettorre and D.P. Hughes (Oxford Univ., Oxford, 2008), pp. 171–188.

    Chapter  Google Scholar 

  38. Hughes, D.P., “Pathways to Understanding the Extended Phenotype of Parasites in Their Hosts,” J. Exper. Biol. 216, 142–147 (2013).

    Article  Google Scholar 

  39. Hunt, J.H., Jeanne, R.L., and Keeping, M.G., “Observations on Apoica pallens, a Nocturnal Neotropical Social Wasp (Hymenoptera: Vespidae, Polistinae, Epiponini),” Insect. Soc. 42, 223–236 (1995).

    Article  Google Scholar 

  40. Hunt, J.H., The Evolution of Social Wasps (Oxford Univ., Oxford, 2007).

    Book  Google Scholar 

  41. Itô, Y., Behavior and Social Evolution of Wasps: the Communal Aggregation Hypothesis (Oxford Univ., Oxford, 1993).

    Google Scholar 

  42. Jeanne, R.L., “Chemical Defense of Brood by a Social Wasp,” Science 168, 1465–1466 (1970).

    Article  CAS  PubMed  Google Scholar 

  43. Jeanne, R.L., “A Latitudinal Gradient in Rates of Ant Predation,” Ecology 60, 1211–1224 (1979).

    Article  Google Scholar 

  44. Jeanne, R.L., “Regulation of Nest Construction Behavior in Polybia occidentalis,” Animal Behav. 52, 473–488 (1996).

    Article  Google Scholar 

  45. Jeanne, R.L., “The Evolution of Exocrine Gland Function in Wasps,” in Natural History and Evolution of Paper-Wasps, Ed. by S. Turillazzi and M.J. West-Eberhard (Oxford Univ., Oxford, 1998), pp. 144–160.

    Google Scholar 

  46. Jeanne, R.L., “Social Complexity in the Hymenoptera, with Special Attention to the Wasps,” in Genes, Behaviors and Evolution of Social Insects, Ed. by T. Kikuchi, N. Azuma, and S. Higashi (Hokkaido Univ., Sapporo, 2003), pp. 81–130.

    Google Scholar 

  47. Jeanne, R.L., “Vibrational Signals in Social Wasps: a Role in Caste Determination?” in Organization of Insect Societies, Ed. by J. Gadau and J. Fewell (Harvard Univ., Cambridge, 2009), pp. 241–263.

    Google Scholar 

  48. Jeanne, R.L. and Keeping, M.O., “Venom Spraying in Parachartergus colobopterus: a Novel Defensive Behavior in a Social Wasp (Hymenoptera: Vespidae),” J. Insect Behav. 8, 433–442 (1995).

    Article  Google Scholar 

  49. Jeanne, R.L. and Nordheim, E.V., “Productivity in a Social Wasp: per capita Output Increases with Swarm Size,” Behav. Ecol. 7, 43–48 (1996).

    Article  Google Scholar 

  50. Jeanne, R.L. and Suryanarayanan, S., “A New Model for Caste Development in Social Wasps,” Comm. Integr. Biol. 4 (4), 373–377 (2011).

    Article  Google Scholar 

  51. Jeanne, R.L. and Taylor, B.J., “Individual and Social Foraging in Social Wasps,” in Food Exploitation by Social Insects: Ecological, Behavioral and Theoretical Approaches, Ed. by S. Jarau and M. Hrncir (CRC Press, Boca Raton, 2009), pp. 45–71.

    Google Scholar 

  52. Karsai, I. and Hunt, J.H., “Food Quantity Affects Traits of Offspring in the Paper Wasp Polistes metricus (Hymenoptera: Vespidae),” Env. Entomol. 31, 99–106 (2002).

    Article  Google Scholar 

  53. Karsai, I. and Penzes, I., “Comb Building in Social Wasps: Self-Organization and Stigmergic Script,” J. Theor. Biol. 161, 505–525 (1993).

    Article  Google Scholar 

  54. Karsai, I. and Wenzel, J.W., “Productivity, Individual- Level and Colony-Level Flexibility, and Organization of Work as Consequences of Colony Size,” Proceedings Natl. Acad. Sci. USA, No. 95, 8665–8669 (1998).

    Article  CAS  Google Scholar 

  55. Karsai, I. and Wenzel, J.W., “Organization and Regulation of Nest Construction Behavior in Metapolybia Wasps,” J. Insect Behav. 13, 111–140 (2000).

    Article  Google Scholar 

  56. Kauffman, S., At Home in the Universe: the Search for the Laws of Self-Organization and Complexity (Oxford Univ., Oxford, 1995).

    Google Scholar 

  57. Keeping, M.G., “Rubbing Behavior and Morphology of van der Vecht’s Gland in Belonogaster petiolata (Hymenoptera: Vespidae),” J. Insect Behav. 3, 85–104 (1990).

    Article  Google Scholar 

  58. Keeping, M.G. and Crewe, R.M., “Parasitoids, Commensals and Colony Size in Nests of Belonogaster (Hymenoptera: Vespidae),” J. South Afr. Entomol. Soc. 46 (46), 309–323 (1983).

    Google Scholar 

  59. Kojima, J., “A Latitudinal Gradient in Intensity of Applying Ant-Repellent Substance to the Nest Petiole in Paper Wasps (Hymenoptera: Vespidae),” Insect. Soc. 40, 403–421 (1993).

    Article  Google Scholar 

  60. Landolt, P.J., Jeanne, R.L., and Reed, H.C., “Chemical Communication in Social Wasps,” in Pheromone Communication in Social Insects, Ed. by R.K. Vander Meer, M. Breed, M. Winston, and K. Espelie (Westview Press, Boulder, 1998), pp. 216–235.

    Google Scholar 

  61. London, K.B. and Jeanne, R.L., “The Interaction between Mode of Colony Founding and Nest Architecture to Ant Defense in Polistine Wasps,” Ethol. Ecol. Evol. 12, 13–35 (2000).

    Article  Google Scholar 

  62. London, K.B. and Jeanne, R.L., “Wasps Learn to Recognize the Odor of Local Ants,” J. Kansas Entomol. Soc. 78, 134–141 (2005).

    Article  Google Scholar 

  63. Lutz, G.G., Strassmann, J.E., and Hughes, C.R., “Nest Defense by the Social Wasps, Polistes exclamans and P. instabilis (Hymenoptera: Vespidae) against the Parasitoid Elasmus polistis (Hym.: Chalcidoidea: Eulophidae),” Entomol. News 95 (95), 47–50 (1984).

    Google Scholar 

  64. Lyubarsky, G.Yu., Mazokhin-Porshnyakov, G.A., and Semenova, S.A., “Analysis of Visual Interaction between Foraging Wasps,” Byul. Mosk. O-va Ispyt. Prir. Biol. 88 (88), 58–64 (1983).

    Google Scholar 

  65. Lyubarsky, G.Yu., Mazokhin-Porshnyakov, G.A., and Semenova, S.A., “On the Ability for Alternative Choice in Bees and Wasps,” Byul. Mosk. O-va Ispyt. Prir. Biol. 92 (92), 63–67 (1987).

    Google Scholar 

  66. Makino, S., “Biology of Latibulus argiolus (Hymenoptera: Ichneumonidae), a Parasitoid of the Paper Wasp Polistes biglumis (Hymenoptera: Vespidae),” Kontyû 51 (51), 426–434 (1983).

    Google Scholar 

  67. Makino, S., “Losses of Workers and Reproductives in Colonies of the Paper Wasp Polistes riparius (Hymenoptera, Vespidae) due to the Parasitic Wasp Latibulus sp.,” Res. Popul. Ecol. 31 (31), 1–10 (1989).

    Article  Google Scholar 

  68. Makino, S. and Sayama, K., “Bionomics of Elasmus japonicus (Hymenoptera, Elasmidae), a Parasitoid of a Paper Wasp, Polistes snelleni (Hymenoptera, Vespidae),” Japan. J. Entomol. 62 (62), 377–383 (1994).

    Google Scholar 

  69. Malinovskij, A.A., Tectology. The Theory of Systems. Theoretical Biology (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  70. Malyshev, S.I., Genesis of the Hymenoptera and the Phases of Their Evolution (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  71. Mateus, S., “Observations on Forced Colony Emigration in Parachartergus fraternus (Hymenoptera: Vespidae: Epiponini): New Nest Site Marked with Sprayed Venom,” Psyche 2011, 1–8 (2011), doi:10.1155/2011/157149.

    Article  Google Scholar 

  72. Matsuura, M., “Size and Composition of Swarming Colonies in Provespa anomala (Hymenoptera, Vespidae), a Nocturnal Social Wasp,” Insect. Soc. 46, 219–223 (1999).

    Article  Google Scholar 

  73. Naumov, N.P., “The Structure of Populations and Dynamics of Abundance of Terrestrial Vertebrates,” Zool. Zh. 46 (46), 1470–1485 (1967).

    Google Scholar 

  74. Naumov, N.P., “The Levels of Organization of Living Matter and Population Biology,” Zh. Obshch. Biol. 33 (33), 651–666 (1971).

    Google Scholar 

  75. Naumov, N.P., “The Problems and Tasks of Population Biology,” in Development of the Structural Level Concept in Biology (Nauka, Moscow, 1972), pp. 322–331 [in Russian].

    Google Scholar 

  76. Naumov, N.P., “Biological (Signal) Fields and Their Significance in the Life of Mammals,” in Progress in Theriology (Nauka, Moscow, 1977), pp. 93–110 [in Russian].

    Google Scholar 

  77. Nigmatullin, Ch.M., “Teleonomic Principles in the Functioning of Biological Systems of Different Hierarchical Levels,” in A.A. Lyubishchev’s Memorial Lectures, Issue XXVI “Modern Problems of Evolution and Ecology”: Proceedings of International Conference, Ulyanovsk, 5–7 April 2012 (Ulyanovsk, 2012), pp. 122–127.

    Google Scholar 

  78. Noll, F.B., “‘Marimbondos’: a Review on the Neotropical Swarm-Founding Polistines,” Sociobiol. 60 (60), 347–354 (2013).

    Google Scholar 

  79. Noll, F.B. and Wenzel, J.W., “Caste in the Swarming Wasps: ‘Queenless’ Societies in Highly Social Insects,” Biol. J. Linn. Soc. 93 (93), 509–522 (2008).

    Article  Google Scholar 

  80. Orlova, E.S., Firman, L.A., and Rusina, L.Yu., “Occurrence of the Mite Sphexicozella connivens Mahunka (Acari, Astigmata, Winterschmidtiidae) in Colonies of the Wasp Polistes dominula (Christ) (Hymenoptera, Vespidae) in the South of Ukraine,” Prirod Alm. Biol. Nauki 16, 101–111 (2011).

    Google Scholar 

  81. Paula, L.C., Andrade, F.R., and Prezoto, F., “Foraging Behavior in the Neotropical Swarm Founding Wasp Parachartergus fraternus (Hymenoptera: Vespidae: Polistinae: Epiponini) during Different Phases of the Biological Cycle,” Sociobiol. 42 (42), 735–744 (2003).

    Google Scholar 

  82. Pickett, K.M. and Carpenter, J.M., “Simultaneous Analysis and the Origin of Eusociality in the Vespidae (Insecta: Hymenoptera),” Arthropod Syst. Phyl. 68 (68), 3–33 (2010).

    Google Scholar 

  83. Plyusnin, Yu.M., The Problem of Biosocial Evolution: Theoretical and Methodological Analysis (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  84. Popov, V.P., Invariants of the Nonlinear World. (Technological Univ., Pyatigorsk, 2005) [in Russian].

    Google Scholar 

  85. Rasnitsyn, A.P., “Regulator Enhancement as a Criterion of Evolutionary Progress,” Byul. Mosk. O-va Ispyt. Prir. Biol. 71 (71), 149–150 (1966).

    Google Scholar 

  86. Rasnitsyn, A. P., “On the Causes of Morphofunctional Progress,” Zh. Obshch. Biol. 32 (32), 549–556 (1971).

    Google Scholar 

  87. Redko, V.G., Evolution, Neural Networks, and Intellect: Models and Concepts of Evolutionary Cybernetics (URSS, Moscow, 2005) [in Russian].

    Google Scholar 

  88. Reeve, H.K., “Polistes,” in The Social Biology of Wasps, Ed. by K.G. Ross and R.W. Matthews (Cornell Univ., New York, 1991), pp. 99–148.

    Google Scholar 

  89. Ribeiro, Jr.C., Guimarães, D.L., Elisei, T., and Prezoto, F., “Foraging Activity Rhythm of the Neotropical Swarm-Founding Wasp Protopolybia exigua (Hymenoptera, Vespidae, Epiponini) in Different Seasons of the Year,” Sociobiol. 47 (47), 115–123 (2006).

    Google Scholar 

  90. Richards, O.W., The Social Wasps of the Americas, Excluding the Vespinae (British Museum Natural History, London, 1978).

    Google Scholar 

  91. Richards, O.W. and Richards, M.J., “Observations on the Social Wasps of South America (Hymenoptera Vespidae),” Trans. Royal Entomol. Soc. London 102, 1–170 (1951).

    Article  Google Scholar 

  92. Rocha, A.A. da and Giannotti, E., “Foraging Activity of Protopolybia exigua (Hymenoptera, Vespidae) in Different Phases of the Colony Cycle, at an Area in the Region of the Medio Sao Francisco River, Bahia, Brazil,” Sociobiol. 50, 813–831 (2007).

    Google Scholar 

  93. Rocha, A.A. da and Giannotti, E., and Bichara-Filho, C.C., “Resources Taken to the Nest by Protopolybia exigua (Hymenoptera, Vespidae) in Different Phases of the Colony Cycle, in a Region of the Medio Sao Francisco River, Bahia, Brazil,” Sociobiol. 54 (54), 439–456 (2009).

    Google Scholar 

  94. Röseler, P.-F., “Reproductive Competition during Colony Establishment,” in The Social Biology of Wasps, Ed. by K.G. Ross and R.W. Matthews (Cornell Univ. Press, London, 1991), pp. 309–335.

    Google Scholar 

  95. Rusina, L.Yu., Polistine Wasps in Natural and Anthropogenic Landscapes of the Lower Dnieper Area (Kherson State Univ., Kherson, 2006) [in Russian].

    Google Scholar 

  96. Rusina, L.Yu., “Reaction of Parasitoids of the Paper Wasp Polistes dominulus (Christ) (Hymenoptera, Vespidae, Polistinae) to the Host Distribution,” Entomol. Obozr. 87 (87), 514–536 (2008) [Entomol. Rev. 88 (88), 881–897 (2008)].

    Google Scholar 

  97. Rusina, L.Yu., “Structural and Functional Organization of Paper Wasp Populations (Hymenoptera, Vespidae),” Trudy Russ. Entomol. Obshch. 79, 1–217 (2009).

    Google Scholar 

  98. Rusina, L.Yu., “Some Aspects of Interrelations between Ants (Hymenoptera, Formicidae) and Polistine Wasps (Hymenoptera, Vespidae),” Zool. Zh. 89 (12), 1520–1530 (2010a) [Entomol. Rev. 90 (90), 241–252 (2011)].

    Google Scholar 

  99. Rusina, L.Yu., “Self-Organization of Populations of Polistine Wasps (Hymenoptera, Vespidae, Polistinae),” Entomol. Obozr. 89 (2), 295–319 (2010b) [Entomol. Review 90 (90), 811–829 (2010)].

    Google Scholar 

  100. Rusina, L.Yu., “Productivity of Colonies of the Wasp Polistes gallicus (L.) (Hymenoptera, Vespidae) in Different Parts of Its Range,” Kavkaz. Entomol. Byul. 7 (1), 95–100 (2011a).

    Google Scholar 

  101. Rusina, L.Yu., “Spatiotemporal Aspects of Interrelations between the Parasitoid Latibulus argiolus (Rossi) (Hymenoptera, Ichneumonidae) and the Host Polistes nimpha (Christ) (Hymenoptera, Vespidae),” Trudy Zool. Inst. Ross. Akad. Nauk 315 (1), 53–62 (2011b).

    Google Scholar 

  102. Rusina, L.Yu., “Host Discrimination by Elasmus schmitti (Hymenoptera, Eulophidae) and Latibulus argiolus (Hymenoptera, Ichneumonidae), Parasitoids of Colonies of Polistes Wasps (Hymenoptera, Vespidae),” Zool. Zh. 90 (10), 1197–1203 (2011c) [Entomol. Rev. 91 (91), 1081–1087 (2011)].

    Google Scholar 

  103. Rusina, L.Yu., “The Role of Parasitoids in Regulation of Polistes Wasp Population (Hymenoptera, Vespidae: Polistinae),” Entomol. Obozr. 91 (91), 691–703 (2012) [Entomol. Rev. 93 (93), 271–280 (2013)].

    Google Scholar 

  104. Rusina, L.Yu., “Organization of Populations of Polistinae Wasps,” in Ants and Forest Protection: Proceedings of XIV All-Russian Myrmecological Symposium, Moscow, 19–23 August 2013 (KMK Sci. Press, Moscow, 2014), pp. 21–26.

    Google Scholar 

  105. Rusina, L.Yu., Rusin, I.Yu., and Savenko, E.V., “The Peculiarities of the Sensitive Period for the Nest Scent Imprinting in Polistine Wasps (Hymenoptera: Vespidae),” in Research of the Hymenoptera (KMK Sci. Press, Moscow, 2007), pp. 246–255 [in Russian].

    Google Scholar 

  106. Rusina, L.Yu., Orlova E.S., and Bogutskii, M.P., “Aggressiveness of the Foundresses of Polistes dominulus (Hymenoptera: Vespidae) Nesting in the Black Sea Biosphere Reserve,” Nauch. Vedom. Belgorod. Gos. Univ. Ser. Estestv. Nauki 3 (3), 68–74 (2009).

    Google Scholar 

  107. Rusina, L.Yu., Firman, L.A., Rusin, I.Yu., and Starr, Ch.K., “Pulp Partitioning and Worker Specialization in Polistine Wasps (Hymenoptera, Vespidae, Polistinae),” Entomol. Obozr. 90 (90), 514–523 (2011) [Entomol. Rev. 91 (91), 820–827 (2011)].

    Google Scholar 

  108. Rusina, L.Yu., Firman, L.A., and Orlova, E.S., “Relation between the Male Reproductive Strategies of Polistes dominula (Christ) (Hymenoptera, Vespidae) and Invasion with the Mite Sphexicozela connivens (Acari, Astigmata, Winterschmidtiidae) in the Black Sea Biosphere Reserve,” Prirod. Alm. Biol. Nauki 18, 135–146 (2013).

    Google Scholar 

  109. Savinov, A.B., “Autocenosis and Democenosis as Symbiotic Systems and Biological Categories,” Zh. Obshch. Biol. 73 (4), 284–301 (2012).

    CAS  PubMed  Google Scholar 

  110. Schmalhausen, I.I., Cybernetic Problems in Biology (Nauka, Novosibirsk, 1968) [in Russian].

    Google Scholar 

  111. Schremmer, F., “Beobachtungen zur Biologie von Apoica pallida (Olivier, 1791), einer neotropischen sozialen Faltenwespe (Hymenoptera, Vespidae),” Insect. Soc. 19, 343–357 (1972).

    Article  Google Scholar 

  112. Seeley, T.D., Visscher, P.K., Schlegel, T., et al., “Stop Signals Provide Cross Inhibition in Collective Decision-Making by Honey Bee Swarms,” Science 335, 108–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Severtsov, A.S., Evolutionary Stasis and Microevolution. (KMK Sci. Press, Moscow, 2008) [in Russian].

    Google Scholar 

  114. Smith, A.R., O’Donnell, S., Jeanne, R.L., “Evolution of Swarm Communication in Eusocial Wasps (Hymenoptera: Vespidae),” J. Insect Behav. 15 (15), 751–764 (2002).

    Article  Google Scholar 

  115. Sonnentag, P.J. and Jeanne, R.L., “Initiation of Absconding- Swarm Emigration in the Social Wasp Polybia occidentalis,” J. Insect Sci. 9 (9), 1–11 (2009).

    Article  Google Scholar 

  116. Strassmann, J.E., “Parasitoids, Predators, and Group Size in the Paper Wasp, Polistes exclamans,” Ecology 62 (62), 1225–1233 (1981).

    Article  Google Scholar 

  117. Sudakov, K.V., The General Theory of Functional Systems (Meditsina, Moscow, 1984) [in Russian].

    Google Scholar 

  118. Sudakov, K.V., “Development of the Theory of Functional Systems in P.K. Anokhin’s School of Thought,” Vestnik Mezhd. Akad. Nauk Russ. Sekt., No. 1, 1–5 (2011).

    Google Scholar 

  119. Takhtajan, A.L., Principia tektologica. Principles of Organization and Transformation of Complex Systems: an Evolutionary Approach (St. Petersburg, 1998) [in Russian].

    Google Scholar 

  120. Theraulaz, G., Bonabeau, E., and Deneubourg, J.-L., “Self-Organization of Hierarchies in Animal Societies: the Case of the Primitively Eusocial Wasp Polistes dominulus Christ,” J. Theor. Biol. 174, 313–323 (1995).

    Article  Google Scholar 

  121. Turchin, V.F., The Phenomenon of Science. The Cybernetic Approach to Evolution (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  122. Wenzel, J.W., “Evolution of Nest Architecture,” in The Social Biology of Wasps, Ed. by K.G. Ross and R.W. Matthews (Cornell Univ., New York, 1991), pp. 480–519.

    Google Scholar 

  123. Wenzel, J.W. and Carpenter, J.M., “Comparing Methods: Adaptive Traits and Tests of Adaptation,” in Phylogenetics and Ecology, Ed. by P. Eggleton and R. Vane-Wright (Acad. Press, London, 1994), pp. 79–101.

    Google Scholar 

  124. West-Eberhard, M.J., “The Social Biology of Polistine Wasps,” Misc. Publ. Mus. Zool. Univ. Mich. 140, 1–101 (1969).

    Google Scholar 

  125. West-Eberhard, M.J., “The Nature and Evolution of Swarming in Tropical Social Wasps (Vespidae, Polistinae, Polybiini),” in Social Insects in the Tropics, Vol. 1, Ed. by P. Jaisson (Universite de Paris-Nord, Paris, 1982), pp. 97–128.

    Google Scholar 

  126. West-Eberhard, M.J., “Flexible Strategy and Social Evolution,” in Animal Societies: Theories and Facts, Ed. by Y. Ito, J.L. Brown, and J. Kikkawa (Japan Sci. Soc. Press, Tokyo, 1987a), pp. 35–51.

    Google Scholar 

  127. West-Eberhard, M.J., “Observations of Xenorhynchium nitidulum (Fabricius) (Hymenoptera, Eumeninae), a Primitively Social Wasp,” Psyche 94 (3–4), 317–323 (1987b).

    Article  Google Scholar 

  128. West-Eberhard, M.J., Carpenter, J.M., and Hanson, P.E., “Familia Vespidae,” in Hymenoptera de la region tropical, Ed. by P.E. Hanson and I.D. Gauld (Gainesville, 2006), pp. 617–644.

    Google Scholar 

  129. Wilson, E.O., The Insect Societies (Harvard Univ., Cambridge, 1971).

    Google Scholar 

  130. Zakharov, A.A., Organization of Ant Communities (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  131. Zakharov, A.A., “Functional Differentiation and Dominance in the Development of Biosociality,” Zool. Zh. 84 (1), 38–53 (2005a) [Entomol. Rev. 85 (Suppl. 1), 1–14 (2005)].

    Google Scholar 

  132. Zakharov, A.A., “Classification of Social Structures in Ants,” Zool. Zh. 84 (10), 1272–1288 (2005b).

    Google Scholar 

  133. Zakharov, A.A., “Migration Strategies in Ants,” in Academician M.S. Ghilarov’s Memorial Lectures (KMK Sci. Press, Moscow, 2006), pp. 53–78 [in Russian].

    Google Scholar 

  134. Zakharov, A.A. and Zakharov, R.A., “The Influence of Zoogenic and Climatic Factors on the Annual Cycle of the Nest of Formica rufa Group Ants,” in Ants and Forest Protection: Proceedings of XIV All-Russian Myrmecological Symposium, Moscow, 19–23 August 2013 (Moscow, 2013), pp. 210–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Rusina.

Additional information

Original Russian Text © L.Yu. Rusina, 2015, published in Zoologicheskii Zhurnal, 2015, Vol. 94, No. 10, pp. 1226–1240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusina, L.Y. Principles of organization of polistinae (Hymenoptera, Vespidae) population. Entmol. Rev. 95, 1036–1050 (2015). https://doi.org/10.1134/S0013873815080102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873815080102

Keywords

Navigation