Skip to main content
Log in

The influence of temperature and photoperiod on the rate of development in Trichogramma principium Sug. et Sor. (Hymenoptera, Trichogrammatidae)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Laboratory investigations demonstrated that the survival of the preimaginal stages and pharate adults of Trichogramma principium was not significantly dependent on temperature over the range from 17 to 30°C but the temperature of 35°C caused a two-fold decrease in the mean number of survived progeny per one female. The rate of the preimaginal development of T. principium (from oviposition to adult emergence) at the temperatures of 17–30°C could be rather closely approximated by linear regression. The sum of effective temperatures was 145–150 degree-days with the lower threshold of about 11.8°C. In addition, at a temperature of 17°C the duration of development significantly (P < 0.001 with the Student’s t-test) depended on the day length: the mean and SD constituted 26.96 ± 0.34 and 27.85 ± 0.27 days at photoperiods of 12 and 18 h, correspondingly. The adaptive role of this quantitative photoperiodic response is not clear. Potentially, the “autumnal acceleration” of development, triggered by the combination of low temperature and short day, raises the proportion of individuals that have reached the diapausing stage before the winter season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boivin, G., “Overwintering Strategies of Egg Parasitoids,” in Biological Control with Egg Parasitoids (Wallingford, 1994), pp. 219–244.

    Google Scholar 

  2. Briere, J.F., Pracros, P., Le Roux, A.Y., and Pierre, J.S., “A Novel Rate Model of Temperature-Dependent Development for Arthropods,” Environ. Entomol. 28(1), 22–29 (1999).

    Article  Google Scholar 

  3. Butler, G.D. and Lopez, J.D., “Trichogramma pretiosum: Development in Two Hosts in Relation to Constant and Fluctuating Temperatures,” Ann. Entomol. Soc. Amer. 73(6), 671–673 (1980).

    Article  Google Scholar 

  4. Calvin, D.D., Knapp, M.C., Welch, S.M., Poston, F.L., and Elzinga, R.J., “Impact of Environmental Factors on Trichogramma pretiosum Reared on Southwestern Corn Borer Eggs,” Environ. Entomol. 13(3), 774–780 (1984).

    Article  Google Scholar 

  5. Cônsoli, F.L. and Parra, J.R.P., “Effects of Constant and Alternating Temperatures on Trichogramma galloi Zucchi (Hym., Trichogrammatidae) Biology. I. Development and Thermal Requirements,” J. Appl. Entomol. 119(1–5), 415–418 (1995).

    Article  Google Scholar 

  6. Danilevsky, A.S., Photoperiodism and Seasonal Development of Insects (Leningrad, 1961) [in Russian].

    Google Scholar 

  7. Foerster, M.R. and Foerster, L.A., “Effects of Temperature on the Immature Development and Emergence of Five Species of Trichogramma,” BioControl 54(3), 445–450 (2009).

    Article  Google Scholar 

  8. Gharbi, N., “Influences of Cold Storage Period and Rearing Temperature on the Biological Traits of Trichogramma oleae,” Tunis. J. Plant Prot. 9(2), 143–153 (2014).

    Google Scholar 

  9. Goodenough, J.L., Hartstack, A.W., and King, E.G., “Developmental Models for Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) Reared on Four Hosts,” J. Econ. Entomol. 76(5), 1095–1102 (1983).

    Article  Google Scholar 

  10. Haile, A.T., Hassan, S.A., Sithanantham, S., Ogol, C.K.P.O., and Baumgärtner, J., “Comparative Life Table Analysis of Trichogramma bournieri Pintureau and Babault and Trichogramma sp. nr. mwanzai Schulten and Feijen (Hym., Trichogrammatidae) from Kenya,” J. Appl. Entomol. 126(6), 287–292 (2002).

    Article  Google Scholar 

  11. Hansen, L.S., “Development Time and Activity Threshold of Trichogramma turkestanica on Ephestia kuehniella in Relation to Temperature,” Entomol. Exp. Appl. 96(2), 185–188 (2000).

    Article  Google Scholar 

  12. Harrison, W.W., King, E.G., and Ouzts, J.D., “Development of Trichogramma exiguum and T. pretiosum at Five Temperature Regimes,” Environ. Entomol. 14(2), 118–121 (1985).

    Article  Google Scholar 

  13. Hohmann, C.L. and Luck, R.F., “Effect of Temperature on the Development and Thermal Requirements of Wolbachia-infected and Antibiotically Cured Trichogramma kaykai Pinto and Stouthamer (Hymenoptera: Trichogrammatidae),” An. Soc. Entomol. Brasil. 29(3), 497–505 (2000).

    Article  Google Scholar 

  14. Honěk, A., “Constraints on Thermal Requirements for Insect Development,” Entomol. Sci. 2(4), 615–621 (1999).

    Google Scholar 

  15. Kalyebi, A., Sithanantham, S., Overholt, W.A., Hassan, S.A., and Mueke, J.M., “Parasitism, Longevity and Progeny Production of Six Indigenous Kenyan Trichogrammatid Egg Parasitoids (Hymenoptera: Trichogrammatidae) at Different Temperature and Relative Humidity Regimes,” Biocon. Sci. Tech. 15(3), 255–270 (2005).

    Article  Google Scholar 

  16. Kalyebi, A., Overholt, W.A., Schulthess, F., Mueke, J.M., and Sithanantham, S., “The Effect of Temperature and Humidity on the Bionomics of Six African Egg Parasitoids (Hymenoptera: Trichogrammatidae),” Bull. Entomol. Res. 96(3), 305–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Karpova, S.G., “The Role of Endogenous and Exogenous Factors in Regulation of Synchronous Emergence of Trichogramma embryophagum Hartig and T. principium Sug. et Sor. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 85(2), 267–282 (2006) [Entomol. Rev. 86 (3), 252–263 (2006)].

    Google Scholar 

  18. Karpova, S.G. and Reznik, S.Ya., “Interaction of Exogenous Factors (Light and Temperature) in their Influence on the Daily Pattern of Adult Eclosion in Trichogramma embryophagum (Hymenoptera: Trichogrammatidae),” Eur. J. Entomol. 99(4), 427–436 (2002).

    Article  Google Scholar 

  19. Kipyatkov, V.E. and Lopatina, E.B., “Intraspecific Variation of Thermal Reaction Norms for Development in Insects: New Approaches and Prospects,” Entomol. Obozr. 89(1), 33–61 (2010) [Entomol. Rev. 90 (2), 163–184 (2010)].

    Google Scholar 

  20. Ksentini, I., Herz, A., Ksantini, M., Jardak, T., and Hassan, S.A., “Temperature and Strain Effects on Reproduction and Survival of Trichogramma oleae and Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae),” Biocon. Sci. Tech. 21(8), 903–916 (2011).

    Article  Google Scholar 

  21. Kutcherov, D.A. and Kipyatkov, V.E., “Control of Preimaginal Development by Photoperiod and Temperature in the Dock Leaf Beetle Gastrophysa viridula (De Geer) (Coleoptera, Chrysomelidae),” Entomol. Obozr. 90(2), 249–271 (2011) [Entomol. Rev. 91 (6), 692–708 (2011)].

    Google Scholar 

  22. Kutcherov, D.A., Lopatina, E.B., and Kipyatkov, V.E., “Photoperiod Modifies Thermal Reaction Norms for Growth and Development in the Red Poplar Leaf Beetle Chrysomela populi (Coleoptera: Chrysomelidae),” J. Insect Physiol. 57(7), 892–898 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Lopatina, E.B., Balashov, S.V., and Kipyatkov, V.E., “First Demonstration of the Influence of Photoperiod on the Thermal Requirements for Development in Insects and in Particular the Linden Bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae),” Europ. J. Entomol. 104(1), 23–31 (2007).

    Article  Google Scholar 

  24. Lopatina, E.B., Kipyatkov, V.E., Balashov, S.V., Kutcherov, D.A., “Photoperiod-Temperature Interaction-a New Form of Seasonal Control of Growth and Development in Insects and, in particular, in the Carabid Beetle, Amara communis (Coleoptera: Carabidae),” Zhurn. Evol. Biokhim. Fisiol. 47(6), 491–503 (2011) [J. Evol. Biochem. Physiol. 47 (6), 578–592 (2011)].

    CAS  Google Scholar 

  25. Maceda, A., Hohmann, C. L., and Santos, H.R., “Temperature Effects on Trichogramma pretiosum Riley and Trichogrammatoidea annulata De Santis,” Braz. Archiv Biol. Technol. 46(1), 27–32 (2003).

    Article  Google Scholar 

  26. Musolin, D.L. and Saulich, A.K., “Photoperiodic Control of Nymphal Growth in True Bugs (Heteroptera),” Zool. Zh. 76(5), 530–542 (1997) [Entomol. Rev. 77 (6), 768–780 (1997)].

    Google Scholar 

  27. Musolin, D.L., Tsytsulina, K., and Ito, K., “Photoperiodic and Temperature Control of Reproductive Diapause Induction in the Predatory Bug Orius strigicollis (Heteroptera: Anthocoridae) and its Implications for Biological Control,” Biol. Contr. 31(11), 91–98 (2004).

    Article  Google Scholar 

  28. Parra, J.R.P., Zucchi, R.A., Silveira Neto, S., and Haddad, M.L., “Biology and Thermal Requirements of Trichogramma galloi Zucchi and T. distinctum Zucchi on Two Factitious Hosts,” Coll. INRA. 56, 81–84 (1991).

    Google Scholar 

  29. Reznik, S.Ya., “Ecological and Evolutionary Aspects of Photo-Thermal Regulation of Diapause in Trichogramma,” Zh. Evol. Biochem. Physiol. 47(6), 434–443 (2011) [J. Evol. Biochem. Physiol. 47 (6), 512–523 (2011)].

    Google Scholar 

  30. Reznik, S.Ya. and Karpova, S.G., “The Method of Synchronization of Trichogramma Development,” Zashch. Rast. 2, 54–55 (2006).

    Google Scholar 

  31. Reznik, S.Ya. and Kats, T.S., “Exogenous and Endogenous Factors Inducing Diapause in Trichogramma prin cipium Sug. et Sor. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 83(4), 776–785 (2004) [Entomol. Rev. 84 (9), 963–970 (2004)].

    Google Scholar 

  32. Reznik, S.Ya. and Vaghina, N.P., “Effect of Photoperiod on Parasitization by Trichogramma principium (Hymenoptera: Trichogrammatidae),” Europ. J. Entomol. 104(4), 705–713 (2007).

    Article  Google Scholar 

  33. Reznik, S.Ya., Voinovich, N.D., and Vaghina, N.P., “Effect of Temperature on the Reproduction and Development of Trichogramma buesi (Hymenoptera: Trichogrammatidae),” Europ. J. Entomol. 106(4), 535–544 (2009).

    Article  Google Scholar 

  34. Reznik, S.Ya., Vaghina, N.P., and Voinovich, N.D., “Multigenerational Maternal Effect on Diapause Induction in Trichogramma Species (Hymenoptera: Trichogrammatidae),” Biocon. Sci. Tech. 22(4), 429–445 (2012a).

    Article  Google Scholar 

  35. Reznik S.Ya., Vaghina N.P., and Vasiljev, A.L., “Photo-Thermal Regulation of Diapause in Trichogramma piceum Djur. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 91(3), 485–491 (2012b) [Entomol. Rev. 93 (1), 9–13 (2013)].

    Google Scholar 

  36. Rundle, B.J. and Hoffmann, A.A., “Overwintering of Trichogramma funiculatum Carver (Hymenoptera Trichogrammatidae) under Semi-Natural Conditions,” Environ. Entomol. 32(2), 290–298 (2003).

    Article  Google Scholar 

  37. Saulich, A.Kh. and Volkovich, T.A., Ecology of Photoperiodism in Insects (St. Petersburg, 2004) [in Russian].

    Google Scholar 

  38. Saunders, D.S., Steel, C.G.H., Vafopoulou, X., and Lewis, R.D., Insect Clocks (Amsterdam, 2002).

    Google Scholar 

  39. Smith, S.M., “Biological Control with Trichogramma: Advances, Successes, and Potential of their Use,” Annu. Rev. Entomol. 41, 375–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Sorokina, A.P., “Biological and Morphological Substantiation of the Specific Status of Trichogramma telengae sp. n. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 66(1), 32–46 (1987).

    Google Scholar 

  41. Sorokina, A.P., “Photo-Thermal Reactions Controlling the Diapause in Three Trichogramma Species from Leningrad Province,” Vest. Zashch. Rast. 3, 51–54 (2010).

    Google Scholar 

  42. Sorokina, A.P., “The Past and Present of Trichogramma Application,” Zashch. Rast. 10, 9–12 (2011).

    Google Scholar 

  43. Sorokina, A.P. and Maslennikova, V.A., “The Peculiarities of Photo-Thermic Reactions in Some Species of the Genus Trichogramma (Hymenoptera, Trichogrammatidae),” Vestnik Len. Gos. Univ. Ser. 3, 1, 9–14 (1986).

    Google Scholar 

  44. Sorokina, A.P. and Maslennikova, V.A., “The Temperature Optimum for Diapause Induction in Species of the Genus Trichogramma Westw. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 66(4), 689–699 (1987).

    Google Scholar 

  45. Sreekumar, K.M. and Paul, A.V.N., “Effect of Temperature on the Developmental Rate of Trichogramma brasiliensis Ashmead (Hymenoptera: Trichogrammatidae),” Sashpa 4(1), 17–21 (1997).

    Google Scholar 

  46. Sugonyaev, E.S. and Sorokina, A.P., “Taxonomy of Trichogramma,” Zashch. Rast. 6, 33–35 (1975).

    Google Scholar 

  47. Sugonyaev, E.S. and Sorokina, A.P., “New Species of the Genus Trichogramma from Middle Asia and Kazakhstan,” Zool. Zh. 55(5), 777–779 (1976).

    Google Scholar 

  48. Sugonyaev, E.S. and Sorokina, A.P., “Trichogramma Westwood,” in Keys to the Insects of the European Part of the USSR (Moscow, 1978), vol. 3, part 2, pp. 507–511 [in Russian].

    Google Scholar 

  49. Tauber, M.J., Tauber, C.A., and Masaki, S., Seasonal Adaptations of Insects (New York, 1986).

    Google Scholar 

  50. Tyshchenko, V.P., “Physiology of Insect Photoperiodism,” Trudy Vses. Entomol. O-va 59, 1–155 (1977).

    Google Scholar 

  51. Vasiljev, A.L., “Studies on the Influence of Temperature and Relative Air Humidity on Biological Parameters of Several Trichogramma Species,” Inf. Bull. EPS IOBC 38, 51–53 (2007).

    Google Scholar 

  52. Venkatesan, T. and Jalali, S.K., “Trichogrammatids: Adaptation to Stresses,” in Biological Control of Insect Pests Using Egg Parasitoids (New Delhi, 2013), pp. 105–125.

    Chapter  Google Scholar 

  53. Voegele, J., Pizzol, J., and Babi, A., “The Overwintering of Some Trichogramma Species,” Coll. INRA. 43, 275–282 (1988).

    Google Scholar 

  54. Voinovich, N.D., Reznik, S.Ya., and Vaghina, N.P., “Comparative Analysis of Maternal and Grand-Maternal Photoperiodic Responses of Trichogramma Species (Hymenoptera: Trichogrammatidae),” Europ. J. Entomol. 110(3) 451–460 (2013).

    Article  Google Scholar 

  55. Zaslavski, V.A., Photoperiodic and Temperature-Based Control of Insect Development (Proc. ZIN AN SSR, Vol. 120) (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  56. Zaslavski, V.A. and Mai Fu Kvi, “Experimental Investigation of Some Factors Affecting Fecundity of Trichogramma Westw. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 61(4), 724–736 (1982).

    Google Scholar 

  57. Zaslavski, V.A. and Umarova, T.Ya., “Photoperiodic and Temperature Control of Diapause in Trichogramma evanescens Westw. (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 60(4), 721–731 (1981).

    Google Scholar 

  58. Zaslavski, V.A. and Umarova, T.Ya., “Environmental and Endogenous Control of Diapause in Trichogramma Species,” Entomophaga 35(1), 23–29 (1990).

    Article  Google Scholar 

  59. Zaslavski, V.A., Mai Fu Kvi, and Umarova, T.Ya., “Physiological Reactions Controlling Trichogramma Development and Reproduction,” in Trichogramma in Plant Protection (Moscow, 1988), pp. 35–46 [in Russian].

    Google Scholar 

  60. Zaslavski, V.A., Zinovjeva, K.B., Umarova, T.Ya., and Reznik, S.Ya., “Interaction of Circadian Rhythm Synchronized by Photoperiod and Thermoperiod with Direct Influence of Light and Temperature as Factor Determining Rhythm of Adult Eclosion in Two Species of Trichogramma (Hymenoptera, Trichogrammatidae),” Entomol. Obozr. 78(1), 3–14 (1999) [Entomol. Rev. 79 (1), 1–10 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Reznik.

Additional information

Original Russian Text © S.Ya. Reznik, N.D. Voinovich, 2015, published in Entomologicheskoe Obozrenie, 2015, Vol. 94, No. 2, pp. 290–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, S.Y., Voinovich, N.D. The influence of temperature and photoperiod on the rate of development in Trichogramma principium Sug. et Sor. (Hymenoptera, Trichogrammatidae). Entmol. Rev. 95, 289–295 (2015). https://doi.org/10.1134/S001387381503001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001387381503001X

Keywords

Navigation