Skip to main content
Log in

Questions of molecular evolution of pheromone communication in caddisflies and lower moths (Insecta: Trichoptera, Lepidoptera)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Recent GS-MS and GC-EAD studies of pheromone production and perception in caddisflies and lower moths have shown that these insects use a rather limited selection of volatiles as attractants. Most of them are alcohols and ketones, although the diversity of chemicals produced by sternal glands of abdominal segment V is much wider, especially in the lower Trichoptera. Sternal pheromone glands produce only short-chain polymers in all Amphiesmenoptera. These glands are part of the ground-plan for the related orders, Trichoptera and Lepidoptera, occurring in both sexes and producing similar but not identical sets of components in males and females. The presence of pheromone volatiles is shown to be restricted to the gland segments (Fig. 1), although some other shortchain polymers do occur in the head of females of Molanna angustata (Molannidae). The pheromone blends of lower Trichoptera (Glossosomatidae, Rhyacophilidae, and Philopotamidae) are multi-component and resemble plant volatiles in composition. A hypothesis of the origin of pheromone communication is proposed postulating basic resemblance of early pheromones and plant volatiles in variety and chemical composition. These pheromones were detected by non-specialized receptors of the amphiesmenopteran ancestor and served as guides for insect aggregation on plants as well as on shores of reservoirs, marking the places suitable for a wide variety of species. The primary aggregation function of pheromones was changed in more advanced communication systems to the species-specific signaling with sex-related asymmetry of signals, although the aggregation significance persisted in some species. Pheromone communication has disappeared in some most advanced lineages (e.g., Leptoceridae) with parallel reduction of glands, secretion, and antennal receptors. The pheromone composition does not show gradual divergent evolution in related species; instead, abrupt transformation of pheromone blends with persistence of major components in remote families seems to be the typical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansteeg, O. and Dettner, K., “Chemistry and Possible Biological Significance of Secretions from a Gland Discharging at the 5th Abdominal Sternite of Adult Caddisflies (Trichoptera),” Entomol. Gen. 15, 303–312 (1991).

    Article  Google Scholar 

  2. Ayasse, M., Paxton, R.J., and Tengo, J., “Mating Behavior and Chemical Communication in the Order Hymenoptera,” Annu. Rev. Entomol. 46, 31–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bergmann, J., Identifizierung und Synthese fluchtiger Inhaltsstoffe aus Insekten. Diss. zur Erlangung des Doktorgrades des Fachbereiches Chemie der Universität Hamburg (Hamburg, 2002).

    Google Scholar 

  4. Bergmann, J., Löfstedt, C., Ivanov, V.D., and Francke, W., “Identification and Assignment of the Absolute Configuration of Biologically Active Methyl-Branched Ketones from Limnephilid Caddisflies,” Eur. J. Org. Chem., No. 16, 3175–3179 (2001).

    Google Scholar 

  5. Bergmann, J., Löfstedt, C., Ivanov, V.D., and Francke, W., “Electrophysiologically Active Compounds Identified from Six Species of Caddisflies (Trichoptera),” in Proceedings of 10th International Symposium on Trichoptera, Germany, Potsdam, 31 July–6 August 2000 (Keltern, 2002), pp. 37–46 [Nova Suppl. Entomol. 15, 37–46 (2002)].

    Google Scholar 

  6. Bergmann, J., Löfstedt, C., Ivanov, V.D., and Francke, W., “Identification and Synthesis of New Bicyclic Acetals from Caddisflies (Trichoptera),” Tetrahedron Letters 45, 3669–3672 (2004).

    Article  CAS  Google Scholar 

  7. Billen, J. and Morgan, E.D., “Pheromone Communication in Social Insects: Sources and Secretions,” in Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites, Ed. by R.K. Vander Meer, M.D. Breed, K.E. Espelie, and M.L. Winston (Westview Press, Colorado, USA, 1998), pp. 3–33.

    Google Scholar 

  8. Bjostad, L.B., Jewett, D.K., and Brigham, D.L., “Sex Pheromone of Caddisfly Hesperophylax occidentalis (Banks) (Trichoptera: Limnephilidae),” J. Chem. Ecol. 22(1), 103–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Byer, J.A., “Pheromone Component Patterns of Moth Evolution Revealed by Computer Analysis of the Pherolist,” J. Animal Ecol. 75, 399–407 (2006).

    Article  Google Scholar 

  10. Djernaes, M. and Sperling, F.A.H., “Evolutionary Riddles and Phylogenetic Twiddles: the Ground Plan and Early Diversification of the Sternum V Gland in Amphiesmenoptera (Trichoptera + Lepidoptera),” in Proceedings of the 13th International Symposium on Trichoptera. Białowieża, Poland, June 22–27, 2009 (Zoosymposia No. 5) (Magnolia Press, 2011), pp. 83–100.

    Google Scholar 

  11. Djernaes, M. and Sperling, F.A.H., “Exploring a Key Synapomorphy: Correlations between Structure and Function in the Sternum V Glands of Trichoptera and Lepidoptera (Insecta),” Biol. J. Linn. Soc. 106, 561–579 (2012).

    Article  Google Scholar 

  12. Duffield, R.M., Blum, M.S., Wallace, J.B., et al., “Chemistry of the Defense Secretion of the Caddisfly Pycnopsyche scabripennis (Trichoptera: Limnephilidae),” J. Chem. Ecol. 3, 649–656 (1977).

    Article  CAS  Google Scholar 

  13. El-Sayed, A.M., The Pherobase: Database of Pheromones and Semiochemicals (2013), http://www.pherobase.com.

    Google Scholar 

  14. Elizarov, Yu.A., Chemoreception in Insects (Moscow State Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  15. Hashimoto, Y. and Kobayashi, Y., “Morphology of Sternum V Glands in Three Caddisfly Species, Stenopsyche marmorata, Eubasilissa regina and Nemotaulius admorsus (Insecta: Trichoptera),” Entomol. Sci. 12(3), 298–307 (2009).

    Article  Google Scholar 

  16. Ivanov, V.D., “The Behavior of Caddisflies in Flight,” Latv. Entomol. 28, 85–94 (1985).

    Google Scholar 

  17. Ivanov, V.D., “Principles of the Sexual Communication in Caddisflies (Insecta, Trichoptera),” in Sensory Systems of Arthropods, Ed. by K. Wiese et al. (Birkhuser Verlag, Basel, 1993), pp. 609–626.

    Google Scholar 

  18. Ivanov, V.D., Laanmaa, M.K., and Tsibulsky, A.I., “Attraction of Caddisflies to Pheromone Traps in the Ust-Lena Reserve,” in Hydrobiological Studies in Nature Reserves (Nauka, Moscow, 1996), pp. 121–128 [in Russian].

    Google Scholar 

  19. Ivanov, V.D. and Melnitsky, S.I., “Structure of Sternal Pheromone Glands in Caddisflies (Trichoptera),” Entomol. Obozr. 78(3), 505–526 (1999) [Entomol. Rev. 79 (8), 926–942 (1999)].

    Google Scholar 

  20. Ivanov, V.D. and Melnitsky, S.I., “Structure of Pheromone Glands in Trichoptera,” in Proceedings of the 10th International Symposium on Trichoptera, Germany, Potsdam, 31 July–6 August 2000 (Keltern, 2002), pp. 17–28 [Nova Suppl. Entomol. 15, 17–28 (2002)].

    Google Scholar 

  21. Ivanov, V.D. and Melnitsky, S.I., “New Caddisfly Species of the Genus Wormaldia (Trichoptera: Philopotamidae) from Baltic Amber,” Paleontol. J. 39(3), 284–288 (2005).

    Google Scholar 

  22. Ivanov, V.D. and Melnitsky, S.I., “The Morphology of Dajella tenera (Trichoptera, Glossosomatidae): Taxonomic Status and Evidence for Pheromone Communication in the Mesozoic,” Entomol. Obozr. 85(2), 365–374 (2006) [Entomol. Rev. 86 (5), 568–575 (2006)].

    Google Scholar 

  23. Ivanov, V.D. and Melnitsky, S.I., “Structure and Morphological Types of the Antennal Olfactory Sensilla in Phryganeidae and Limnephilidae (Insecta: Trichoptera),” in Proceedings of the 13th International Symposium on Trichoptera. Białowieża, Poland, June 22–27, 2009 (Zoosymposia No. 5) (Magnolia Press, 2011), pp. 210–234.

    Google Scholar 

  24. Ivanov, V.D. and Melnitsky, S.I., “Ten New Species of Caddisflies (Insecta: Trichoptera) from the Baltic Amber,” Paleontol. J. 47(2), 166–176 (2013a).

    Article  Google Scholar 

  25. Ivanov, V.D. and Melnitsky, S.I., “The Structure of Pheromones and Antennal Receptors in Caddisflies (Insecta: Trichoptera),” in Hydroentomology in Russia and Adjacent Countries: Proceedings of V All-Russia Symposium on Amphibiotic and Aquatic Insects (Borok, 2013b), pp. 62–68.

    Google Scholar 

  26. Ivanov, V.D., Melnitsky, S.I., and Syrnikov, Yu.S., “Attraction of Males of Anabolia laevis Zett. (Trichoptera: Limnephilidae) to Pheromone Traps,” Vestnik Sankt-Peterburg. Gos. Univ. Ser. 3, No. 19, 113–116 (2000).

    Google Scholar 

  27. Ivanov, V.D., Melnitsky, S.I., and Zhukovskaya, M.I., “Chemical Communication of Anabolia laevis Zett. (Trichoptera: Limnephilidae): the Behavioral and Physiological Aspects,” Sensor. Sistemy 22(4), 333–341 (2008).

    Google Scholar 

  28. Ivanov, V.D. and Sukacheva, I.D., “Trichoptera (Phryganeida),” in History of Insects, Ed. by A.P. Rasnitsyn and L.J. Quicke (Kluwer Acad. Publ., Dordrecht etc., 2002), pp. 199–220.

    Google Scholar 

  29. Ivanov, V.P., “Ultrastructural Organization of Insect Chemoreceptors,” Trudy Vses. Entomol. O-va 53, 301–333 (1969).

    Google Scholar 

  30. Ivanov, V.P., Sensory Organs of Insects and Other Arthropods (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  31. Jacobson, M., Insect Sex Pheromones (Academic Press Inc., New York, 1972; Mir, Moscow, 1976) [in Russian].

    Google Scholar 

  32. Kite, G.C., “The Floral Odor of Arum maculatum,” Biochem. Syst. Ecol. 23, 343–354 (1995).

    Article  CAS  Google Scholar 

  33. Kjer, K.M., Blahnik, R.J., and Holzenthal, R.W., “Phylogeny of Caddisflies (Insecta, Trichoptera),” Zool. Scr. 31(1), 83–91 (2002).

    Article  Google Scholar 

  34. Kozlov, M.V., Ivanov, V.D., and Rasnitsyn, A.P., “Lepidoptera (Papilionida),” in History of Insects, Ed. by A.P. Rasnitsyn and L.J. Quicke (Kluwer Acad. Publ., Dordrecht etc., 2002), pp. 220–227.

    Google Scholar 

  35. Kozlov, M.V., Zhu, J., Philipp, P., et al., “Pheromone Specificity in Eriocrania semipurpurella (Stephens) and E. sangii (Wood) (Lepidoptera: Eriocraniidae) Based on Chirality of Semiochemicals,” J. Chem. Ecol. 22, 431–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Kozlov, M.V. and Zvereva, E.L., “A Failed Attempt to Demonstrate Pheromone Communication in Archaic Moth of the Genus Sabatinca Walker (Lepidoptera, Micropterigidae),” Ecol. Letters 2, 215–218 (1999).

    Article  Google Scholar 

  37. Kristensen, N.P., “Studies on the Morphology and Systematics of Primitive Lepidoptera,” Steenstrupia 10, 141–191 (1984).

    Google Scholar 

  38. Kristensen, N.P., “Early Evolution of the Lepidoptera + Trichoptera Lineage: Phylogeny and the Ecological Scenarios,” Mem. Mus. Natn. Hist. Nat. N. S. Zool. 173, 253–271 (1997).

    Google Scholar 

  39. Kristensen, N.P. and Skalski, A.W., “Phylogeny and Paleontology,” in Lepidoptera: Moths and Butterflies. 1 (Handbook of Zoology, Vol. IV, Part 35), Ed. by N.P. Kristensen (De Gruyter, New York, 1999), pp. 7–25.

    Google Scholar 

  40. Liénard, M.A. and Löfstedt, C., “Functional Flexibility as a Prelude to Signal Diversity? Role of a Fatty Acyl Reductase in Moth Pheromone Evolution,” Comm. Integr. Biol. 3(6), 586–588 (2010).

    Article  Google Scholar 

  41. Löfstedt, C., “Evolution of Moth Pheromones,” in Insect Chemical Ecology. Proceedings of a Conference Held in Tebor, 1990, Ed. by I. Herdy (Acad. Prague and SPB Acad. Publ., The Hague, 1991), pp. 57–73.

    Google Scholar 

  42. Löfstedt, C., Hansson, B.S., Petersson, E., et al., “Pheromonal Secretions from Glands on the 5th Abdominal Sternite of Hydropsychid and Rhyacophilid Caddisflies (Trichoptera),” J. Chem. Ecol. 20, 153–170 (1994).

    Article  PubMed  Google Scholar 

  43. Löfstedt, C., Bergmann, J., Francke, W., et al., “Identification of a Sex Pheromone Produced by Sternal Glands in Females of the Caddisfly Molanna angustata Curtis (Trichoptera, Molannidae),” J. Chem. Ecol. 34(2), 220–228 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Löfstedt, C. and Kozlov, M., “A Phylogenetic Analysis of Pheromone Communication in Primitive Moths,” in Insect Pheromone Research, Ed. by R.T. Cardé and A.K. Minks (Springer, 1997), pp. 473–489.

    Chapter  Google Scholar 

  45. Melnitsky, S.I., “Preliminary Data on the Histological Structure of the Sternal Pheromone Glands in Caddisflies,” in Fauna, Ecology, Ethology, and Physiology of Amphibiotic and Aquatic Insects in Russia: Proceedings of VI All-Russia Trichopterological Symposium and I All-Russia Symposium on Amphibiotic and Aquatic Insects, Voronezh, 20–22 May 2000 (Voronezh, 2001), pp. 37–39.

    Google Scholar 

  46. Melnitsky, S.I., “Comparative Morphological Analysis of Abdominal Sternites IV and V in Amphiesmenoptera,” in Fauna, Ecology, Ethology, and Physiology of Amphibiotic and Aquatic Insects in Russia: Proceedings of II All-Russia Symposium on Amphibiotic and Aquatic Insects, Voronezh, 15–17 September 2003 (Voronezh, 2004), pp. 111–118.

    Google Scholar 

  47. Melnitsky, S.I. and Deev, R.V., “The Fine Structure of Sternal Pheromone Glands in Two Caddisfly Species from the Rhyacophilidae and Limnephilidae Families (Insecta: Trichoptera),” Russ. Entomol. J. 18(2), 107–116 (2009).

    Google Scholar 

  48. Melnitsky, S.I. and Ivanov, V.D., “Evolution of the Palpal Receptor Complexes in Amphiesmenoptera,” in Problems of Aquatic Entomology in Russia and Adjacent Countries: Proceedings of IV All-Russia Symposium on Amphibiotic and Aquatic Insects (Vladikavkaz, 2010), pp. 27–33.

    Google Scholar 

  49. Melnitsky, S.I., Ivanov, V.D., and Zueva, L.V., “Pheromone Gland Musculature in Phryganeidae: Structural Features, Postcopulatory Modification and Taxonomic Significance,” in Proceedings of the 13th International Symposium on Trichoptera. BiaŁowieża, Poland, June 22–27, 2009 (Zoosymposia No. 5) (Magnolia Press, 2011), pp. 319–330.

    Google Scholar 

  50. Nasonov, N., A Course of Entomology. Part 1: The Integument (Warsaw, 1901) [in Russian].

    Google Scholar 

  51. Noirot, C., “The Sternal Glands of Termites: Segmental Pattern, Phylogenetic Implications,” Ins. Soc. 42, 321–323 (1995).

    Article  Google Scholar 

  52. Noirot, C. and Quenneedey, A., “Fine Structure of Insect Epidermal Glands,” Annu. Rev. Entomol. 19, 61–80 (1974).

    Article  Google Scholar 

  53. Prather, A., “Revision of the Neotropical Caddisfly Genus Phyloicus (Trichoptera: Calamoceratidae),” Zootaxa 275, 1–214 (2003).

    Google Scholar 

  54. Quennedey, A., “Morphology and Ultrastructure of Termite Defense Glands,” in Defensive Mechanisms in Social Insects, Ed. by H.R. Hermann (Praeger Press, New York, 1984), pp. 151–200.

    Google Scholar 

  55. Quennedey, A., “The Molting Process of Perennial Class 3 Gland Cells during the Postembryonic Development of Two Heterometabolous Insects: Blaberus (Dictyoptera) and Dysdercus (Heteroptera),” Ann. Soc. Entomol. Fr. 27(2), pp. 143–161 (1991).

    Google Scholar 

  56. Quennedey, A., “Insect Epidermal Gland Cells: Ultrastructure and Morphogenesis,” in Microscopic Anatomy of Invertebrates, Vol. 11, Ed. by F.W. Harrison and M. Locke (Wiley-Liss Inc., New York, 1998), pp. 177–207.

    Google Scholar 

  57. Quennedey, A., “Perspectives on Four Decades of Transmission-Electron Microscopy on Insect Exocrine Glands,” Atti Acad. Naz. Ital. Entomol. 48, 85–116 (2000).

    Google Scholar 

  58. Resh, V.H., Jackson, J.K., and Wood, J.R., “Techniques for Demonstrating Sex Pheromones in Trichoptera,” in Proceedings of the 5th International Symposium on Trichoptera, Ed. by M. Bournaud and H. Tachet (Dr. W. Junk, Boston, 1987), pp. 161–164.

    Chapter  Google Scholar 

  59. Roelofs, W. and Bjostad, L., “Biosynthesis of Lepidopteran Pheromones,” Bioorg. Chem. 12(4), 279–298 (1984).

    Article  CAS  Google Scholar 

  60. Skirkevicius, A.V., Pheromone Communication in Insects (Mokslas, Vilnius, 1986) [in Russian].

    Google Scholar 

  61. Skirkevicius, A.V., Pheromones: A Reference Book (Vilnius, 1988) [in Russian].

    Google Scholar 

  62. Solem, J.O., “Swarming and Habitat Segregation in the Family Leptoceridae (Trichoptera),” Norv. J. Entomol. 25, 145–148 (1978).

    Google Scholar 

  63. Solem, J.O. and Petersson, E., “Demonstration of Female Sex Pheromones and Adult Behavior in Molanna angustata (Trichoptera: Molannidae),” Entomol. Gen. 12, 115–118 (1987).

    Article  Google Scholar 

  64. Symonds, M.R.E. and Elgar, M.A., “The Evolution of Pheromone Diversity,” Trends Ecol. Evol. 23(4), 220–228 (2008).

    Article  PubMed  Google Scholar 

  65. Toth, M., Szocs, G., van Nieukerken, E.J., et al., “Novel Type of Sex Pheromone Structure Identified from Stigmella malella (Stainton) (Lepidoptera: Nepticulidae),” J. Chem. Ecol. 21, 13–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Ulmer, G., “Die Trichopteren des Baltischen Bernsteins,” Beitr. Naturk. Preuss 10, 1–380 (1912).

    Google Scholar 

  67. Wilson, E.O. and Bossert, W.H., “Chemical Communication among Animals,” Rec. Progr. Hormone Res. 19, 673–716 (1963).

    CAS  Google Scholar 

  68. Zhu, J., Kozlov, M.V., Philipp, P., et al., “Identification of a Novel Moth Sex Pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and Its Phylogenetic Implications,” J. Chem. Ecol. 21, 29–43 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Ivanov.

Additional information

Original Russian Text © V.D. Ivanov, S.I. Melnitsky, 2014, published in Entomologicheskoe Obozrenie, 2014, Vol. 93, No. 2, pp. 311–327.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.D., Melnitsky, S.I. Questions of molecular evolution of pheromone communication in caddisflies and lower moths (Insecta: Trichoptera, Lepidoptera). Entmol. Rev. 94, 930–942 (2014). https://doi.org/10.1134/S0013873814070021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873814070021

Keywords

Navigation