Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of High-Entropy Carbides in the Gasless Thermal Explosion Mode

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

High-entropy carbides are a new class of inorganic compounds promising for a wide range of applications. A new concept was proposed for the synthesis of powders of high-entropy carbides by self-propagating high-temperature synthesis (SHS) in the gasless thermal explosion mode from previously mechanically synthesized and structured reaction mixtures. For the first time, high-entropy carbides TaTiNbVWC5 and TaNbVMoWC5 were produced by this method, and their crystal structure was determined and compared with those of similar compounds synthesized by sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Akrami, S., Edalati, P., Fuji, M., and Edalati, K., Mat. Sci. Eng. R: Rep., 2021, vol. 146, p. 100644. https://doi.org/10.1016/j.mser.2021.100644

  2. Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., and Vecchio, K.S., Acta Mater., 2019, vol. 166, pp. 271–280. https://doi.org/10.1016/j.actamat.2018.12.054

    Article  ADS  CAS  Google Scholar 

  3. Calzolari, A., Oses, C., Toher, C., Esters, M., Campilongo, X., Stepanoff, S.P., Wolfe, D.E., and Curtarolo, S., Nat. Commun., 2022, vol. 13, p. 5993. https://doi.org/10.1038/s41467-022-33497-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye, B., Wen, T., and Chu, Y., J. Am. Ceram. Soc., 2020, vol. 103, pp. 500–507. https://doi.org/10.1111/jace.16725

    Article  CAS  Google Scholar 

  5. Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C.R., and Braic, M., Surf. Coat. Technol., 2012, vol. 211, pp. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033

    Article  CAS  Google Scholar 

  6. Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., and Russo, A., J. Mech. Behav. Biomed. Mater., 2012, vol. 10, pp. 197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  7. Pötschke, J., Dahal, M., Herrmann, M., Vornberger, A., Matthey, B., and Michaelis, A., J. Mater. Sci., 2021, vol. 56, pp. 11237–11247. https://doi.org/10.1007/s10853-021-06004-y

  8. Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., and Mukasyan, A.S., Ceram. Int., 2020, vol. 46, no. 11, pp. 19008–19014. https://doi.org/10.1016/j.ceramint.2020.04.230

    Article  CAS  Google Scholar 

  9. Kovalev, D.Yu., Kochetov, N.A., and Chuev, I.I., Ceram. Int., 2021, vol. 47, pp. 32626–32633. https://doi.org/10.1016/j.ceramint.2021.08.158

    Article  CAS  Google Scholar 

  10. Kochetov, N.A. and Kovalev, I.D., Inorg. Mater., 2021, vol. 57, no. 1, pp. 8–13. https://doi.org/10.31857/S0002337X20120106

    Article  CAS  Google Scholar 

  11. Merzhanov, A.G. and Borovinskaya, I.P., Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 2, pp. 366–369.

    CAS  Google Scholar 

  12. Tallarita, G., Licheri, R., Garroni, S., Orru, R., and Cao, G., Scr. Mater., 2019, vol. 158, pp. 100–104. https://doi.org/10.1016/j.scriptamat.2018.08.039

    Article  CAS  Google Scholar 

  13. Sedegov, A.S., Bobojanov, A.R., Vorotilo, S., Kuskov, K.V., and Moscovskikh, D.O., IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1014, nos. 1–4, art. 012049(1–4). https://doi.org/10.1088/1757-899X/1014/1/012049

  14. Vadchenko, S.G., Boyarchenko, O.D., Shkodich, N.F., and Rogachev, A.S., Int. J. Self-Propagating High-Temp. Synth., 2013, vol. 22, no. 1, pp. 60–64. https://doi.org/10.3103/S1061386213010123

    Article  CAS  Google Scholar 

  15. Samsonov, G.V. and Vinitskii, I.M., Tugoplavkie soedineniya. Spravochnik (Refractory Compounds. A Reference Book), 2nd ed., Moscow: Metallurgiya, 1976.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00277P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Vadchenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergunova, Y.S., Vadchenko, S.G., Kovalev, I.D. et al. Self-Propagating High-Temperature Synthesis of High-Entropy Carbides in the Gasless Thermal Explosion Mode. Dokl Phys Chem 513, 187–190 (2023). https://doi.org/10.1134/S001250162360033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250162360033X

Keywords:

Navigation