Skip to main content
Log in

Catalysts for Low-Temperature CO Oxidation Based on Platinum, CeO2, and Carbon Nanotubes

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposite catalysts based on highly dispersed platinum and ceria particles supported on carbon nanotubes were studied. The composites were prepared using the complex (Мe4N)2[Pt2(μ-OH)2(NO3)8] as the platinum precursor. This approach ensured stabilization of platinum nanoparticles, clusters, and single atoms/ions on the surface of both ceria and the carbon nanomaterial. Study of the catalytic activity of the samples showed that highly dispersed metallic platinum species stabilized directly on the surface of carbon nanotubes can efficiently oxidize CO present in low concentrations in a reaction mixture at room temperature, in particular, in the presence of water vapor. However, low-temperature CO oxidation at higher CO concentrations requires formation of new active sites through interaction of platinum ions with ceria particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, K., Wang, A., and Zhang, T., ACS Catal., 2012, vol. 2, no. 6, pp. 1165–1178. https://doi.org/10.1021/cs200418w

    Article  CAS  Google Scholar 

  2. Pierre, D., Deng, W., and Flytzani-Stephanopoulos, M., Top. Catal., 2007, vol. 46, pp. 363–373. https://doi.org/10.1007/s11244-007-9013-8

    Article  CAS  Google Scholar 

  3. Rood, S., Eslava, S., Manigrasso, A., and Bannister, S., Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., 2020, vol. 234, no. 4, pp. 936–949. https://doi.org/10.1177/0954407019859822

    Article  CAS  Google Scholar 

  4. Borges, L.R., Silva, A.G.M., Braga, A.H., Rossi, L.M., Suller Garcia, M.A., and Vidinha, P., ChemCatChem, 2021, vol. 13, no. 5, pp. 1340–1354. https://doi.org/10.1002/cctc.202001621

    Article  CAS  Google Scholar 

  5. Gatla, S., Aubert, D., Agostini, G., Mathon, O., Pascarelli, S., Lunkenbein, T., Willinger, M.G., and Kaper, H., ACS Catal., 2016, vol. 6, no. 9, pp. 6151–6155. https://doi.org/10.1021/acscatal.6b00677

    Article  CAS  Google Scholar 

  6. Gänzler, A.M., Casapu, M., Vernoux, P., Loridant, S., Cadete, Santos., Aires, F.J., Epicier, T., Betz, B., Hoyer, R., and Grunwaldt, J.-D., Angew. Chem. In. Ed., 2017, vol. 56, no. 42, pp. 13078–13082. https://doi.org/10.1002/anie.201707842

    Article  CAS  Google Scholar 

  7. Wang, H., Liu, J.-X., Allard, L.F., Lee, S., Liu, J., Li, H., Wang, J., Wang, J., Oh, S.H., Li, W., Flytzani-Stephanopoulos, M., Shen, M., Goldsmith, B.R., and Yang, M., Nat. Commun., 2019, vol. 10, art. 3808. https://doi.org/10.1038/s41467-019-11856-9

    Article  CAS  Google Scholar 

  8. Boronin, A.I., Slavinskaya, E.M., Figueroba, A., Stadnichenko, A.I., Kardash, T.Yu., Stonkus, O.A., Fedorova, E.A., Muravev, V.V., Svetlichnyi, V.A., Bruix, A., and Neyman, K.M., Appl. Catal., B, 2021, vol. 286, p. 119931. https://doi.org/10.1016/j.apcatb.2021.119931

    Article  CAS  Google Scholar 

  9. Meunier, F.C., Cardenas, L., Kaper, H., Smid, B., Vorokhta, M., Grosjean, R., Aubert, D., Dembele, K., and Lunkenbein, T., Angew. Chem., In. Ed., 2021, vol. 60, no. 7, pp. 3799–3805. https://doi.org/10.1002/anie.202013223

    Article  CAS  Google Scholar 

  10. Ning, X., Li, Y., Dong, B., Wang, H., Yu, H., Peng, F., and Yang, Y., J. Catal., 2017, vol. 348, pp. 100–109. https://doi.org/10.1016/j.jcat.2017.02.011

    Article  CAS  Google Scholar 

  11. Kochubey, D.I., Chesnokov, V.V., and Malykhin, S.E., Carbon, 2012, vol. 50, no. 8, pp. 2782–2787. https://doi.org/10.1016/j.carbon.2012.02.040

  12. Melchionna, M., Marchesan, S., Prato, M., and Fornasiero, P., Catal. Sci. Technol., 2015, vol. 5, no. 8, pp. 3859–3875. https://doi.org/10.1039/c5cy00651a

    Article  CAS  Google Scholar 

  13. Bulushev, D.A., Zacharska, M., Lisitsyn, A.S., Podyacheva, O.Yu., Hage, F.S., Ramasse, Q.M., Bangert, U., and Bulusheva, L.G., ACS Catal., 2016, vol. 6, no. 6, pp. 3442–3451. https://doi.org/10.1021/acscatal.6b00476

    Article  CAS  Google Scholar 

  14. Kibis, L.S., Korobova, A.N., Fedorova, E.A., Kardash, T.Yu., Zadesenets, A.V., Korenev, S.V., Stonkus, O.A., Slavinskaya, E.M., Podyacheva, O.Yu., and Boronin, A.I., J. Struct. Chem., 2022, vol. 63, no. 3, pp. 407–422. https://doi.org/10.1134/S0022476622030076

    Article  CAS  Google Scholar 

  15. Podyacheva, O.Yu., Suboch, A.N., Yashnik, S.A., Salnikov, A.V., Cherepanova, S.V., Kibis, L.S., Simenyuk, G.Y., Romanenko, A.I., and Ismagilov, Z.R., J. Struct. Chem., 2021, vol. 62, no. 5, pp. 771–781. https://doi.org/10.1134/S0022476621050139

    Article  CAS  Google Scholar 

  16. Vasilchenko, D., Tkachev, S., Baidina, I., and Korenev, S., Inorg. Chem., 2013, vol. 52, no. 18, pp. 10532–10541. https://doi.org/10.1021/ic401499j

    Article  CAS  Google Scholar 

  17. Vasilchenko, D., Topchiyan, P., Berdyugin, S., Filatov, E., Tkachev, S., Baidina, I., Komarov, V., Slavinskaya, E., Stadnichenko, A., and Gerasimov, E., Inorg. Chem., 2019, vol. 58, no. 9, pp. 6075–6087. https://doi.org/10.1021/acs.inorgchem.9b00370

    Article  CAS  Google Scholar 

  18. Mason, M.G., Phys. Rev. B, 1983, vol. 27, no. 2, pp. 748–762. https://doi.org/10.1103/PhysRevB.27.748

    Article  CAS  Google Scholar 

  19. Tian, Z.Q., Jiang, S.P., Liang, Y.M., and Shen, P.K., J. Phys. Chem. B, 2006, vol. 110, no. 11, pp. 5343–5350. https://doi.org/10.1021/jp056401o

    Article  CAS  Google Scholar 

  20. Ono, L.K., Yuan, B., Heinrich, H., and Roldan Cuenya, B.J., Phys. Chem. C, 2010, vol. 114, no. 50, pp. 22119–22133. https://doi.org/10.1021/jp1086703

    Article  CAS  Google Scholar 

  21. Vorokhta, M., Khalakhan, I., Matolínová, I., Nováková, J., Haviar, S., Lančok, J., Novotný, M., Yoshikawa, H., and Matolín, V., Appl. Surf. Sci., 2017, vol. 396, pp. 278–283.

    Article  CAS  Google Scholar 

  22. Matolín, V., Matolínová, I., Václavů, M., Khalakhan, I., Vorokhta, M., Fiala, R., Piš, I., Sofer, Z., Poltierová-Vejpravová, J., Mori, T., Potin, V., Yoshikawa, H., Ueda, S., and Kobayashi, K., Langmuir, 2010, vol. 26, no. 15, pp. 12824–12831. https://doi.org/10.1021/la100399t

    Article  CAS  Google Scholar 

  23. Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X.I.P., DeLaRiva, A., Wang, M., Engelhard, M.H., Kovarik, L., Datye, A. K., and Wang, Y., Science, 2017, vol. 358, no. 6369, pp. 1419–1423. https://doi.org/10.1126/science.aao2109

    Article  CAS  Google Scholar 

  24. van Spronsen, M.A., Frenken, J.W.M., and Groot, I.M.N., Chem. Soc. Rev., 2017, vol. 46, no. 14, pp. 4347–4374. https://doi.org/10.1039/C7CS00045F

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM examination was carried out using equipment of the Center for Collective Use “ National Catalyst Research Center” (Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences).

Funding

This study was supported by the Russian Science Foundation, project No. 21-13-00094 dated April 20, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Boronin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

The paper was submitted to the special issue “Heterogeneous Catalysis and Environmental Protection.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, L.S., Korobova, A.N., Zadesenets, A.V. et al. Catalysts for Low-Temperature CO Oxidation Based on Platinum, CeO2, and Carbon Nanotubes. Dokl Phys Chem 505, 115–121 (2022). https://doi.org/10.1134/S0012501622700038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622700038

Keywords:

Navigation