Skip to main content
Log in

Neural Network Prediction of Interatomic Interaction in Multielement Substances and High-Entropy Alloys: A Review

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

One of the most exciting tools that have entered the arsenal of modern science and technology in recent years is machine learning, which can efficiently solve problems of approximation of multidimensional functions. There is a rapid growth in the development and application of machine learning in physics and chemistry. This review is devoted to the possibilities of predicting interatomic interactions in multielement substances and high-entropy alloys using artificial intelligence based on neural networks and their active machine learning, which provides a comprehensive overview and analysis of recent research on this topic. The relevance of this direction is due to that the prediction of the structure and properties of materials by means of atomistic quantum mechanical modeling based on density functional theory (DFT) is difficult in many cases because of the rapid increase in computational costs with increasing size in accordance with the size of the object. Machine learning methods make it possible to reproduce real interparticle interaction potentials of the system using the available DFT calculations, and then, on their basis, to model the required properties by the molecular dynamics method on a multiply increased spatiotemporal scale. As a starting point, we introduce machine learning principles, algorithms, descriptors, and databases in materials science. The design of the potential energy surface and interatomic interaction potentials in solid solutions, high-entropy alloys, high-entropy metal compounds with carbon, nitrogen, and oxygen, as well as in bulk amorphous materials, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, no. 4A, pp. A1133–A1138. https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  2. Martin, R.M., Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511805769

  3. Hafner, J., Wolverton, C., and Ceder, G., MRS Bull., 2006, vol. 31, no. 9, pp. 659–668. https://doi.org/10.1557/mrs2006.174

    Article  Google Scholar 

  4. Car, R. and Parrinello, M., Phys. Rev. Lett., 1985, vol. 55, no. 22, pp. 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471

    Article  CAS  PubMed  Google Scholar 

  5. Marx, D. and Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, in Modern Methods and Algorithms of Quantum Chemistry, Grotendorst, J., Ed., Cambridge: Cambridge University Press, 2009, vol. 1, pp. 301–449. https://doi.org/10.1017/CBO9780511609633.

  6. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1989. https://doi.org/10.1093/oso/9780198803195.001.0001

    Book  Google Scholar 

  7. Vitek, V. and Srolovitz, D.J., Atomistic Simulation of Materials: Beyond Pair Potentials, New York: Plenum, 1989. https://doi.org/10.1007/978-1-4684-5703-2

  8. Raabe, D., Computational Materials Science, Weinheim: Wiley-VCH, 1998, pp. 1–400. https://doi.org/10.1002/3527601945

  9. Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, Elsevier, 2002. https://doi.org/10.1016/B978-0-12-267351-1.X5000-7

  10. Valiev, R., Nat. Mater., 2004, vol. 3, no. 8, pp. 511–516. https://doi.org/10.1038/nmat1180

    Article  CAS  PubMed  Google Scholar 

  11. McDowell, D.L., Int. J. Plast., 2010, vol. 26, no. 9, pp. 1280–1309. https://doi.org/10.1016/j.ijplas.2010.02.008

    Article  CAS  Google Scholar 

  12. Heine, V., Robertson, L.J., Payne, M.C., Murrell, J.N., Phillips, J.C., and Weaire, D., Philos. Trans. R. Soc. Lond. A, 1991, vol. 334, no. 1635, pp. 393–405. https://doi.org/10.1098/rsta.1991.0021

    Article  CAS  Google Scholar 

  13. Voter, A.F., MRS Bull., 1996, vol. 21, no. 2, pp. 17–19. https://doi.org/10.1557/S0883769400046248

    Article  CAS  Google Scholar 

  14. Vitek, V., MRS Bull., 1996, vol. 21, no. 2, pp. 20–23. https://doi.org/10.1557/S088376940004625X

    Article  CAS  Google Scholar 

  15. Lennard-Jones, J.E., Proc. R. Soc. Lond. A, 1925, vol. 109, pp. 584–587. https://doi.org/10.1098/rspa.1925.0147

    Article  CAS  Google Scholar 

  16. Rahman, A., Phys. Rev., 1964, vol. 136, no. 2A, pp. A405–A411. https://doi.org/10.1103/physrev.136.a405

    Article  Google Scholar 

  17. Finnis, M.W. and Sinclair, J.E., Philos. Mag. A, 1984, vol. 50, no. 1, pp. 45–55. https://doi.org/10.1080/01418618408244210

    Article  CAS  Google Scholar 

  18. Johnson, R.A., Phys. Rev. B, 1972, vol. 6, no. 6, pp. 2094–2100. https://doi.org/10.1103/physrevb.6.2094

    Article  Google Scholar 

  19. Stillinger, F.H. and Weber, T.A., Phys. Rev. B, 1985, vol. 31, no. 8, pp. 5262–5271. https://doi.org/10.1103/physrevb.31.5262

    Article  CAS  Google Scholar 

  20. Harrison, J.A., Schall, J.D., Maskey, S., Mikulski, P.T., Knippenberg, M.T., and Morrow, B.H., Appl. Phys. Rev., 2018, vol. 5, p. 031104. https://doi.org/10.1063/1.5020808

    Article  CAS  Google Scholar 

  21. Pettifor, D.G., Phys. Rev. Lett., 1989, vol. 63, no. 22, pp. 2480–2483. https://doi.org/10.1103/physrevlett.63.2480

    Article  CAS  PubMed  Google Scholar 

  22. Brenner, D.W., MRS Bull., 1996, vol. 21, no. 2, pp. 36–41. https://doi.org/10.1557/S0883769400046285

    Article  CAS  Google Scholar 

  23. Friedel, J., London, Edinburgh Dublin Philos. Mag. & J. Sci., 1952, vol. 43, no. 337, pp. 153–189. https://doi.org/10.1080/14786440208561086

    Article  CAS  Google Scholar 

  24. Foiles, S.M., MRS Bull., 1996, vol. 31, no. 2, pp. 24–28. https://doi.org/10.1557/S0883769400046261

    Article  Google Scholar 

  25. Jacobse, K.W., Stoltze, P., and Norskov, J.K., Surf. Sci., 1996, vol. 366, no. 2, pp. 394–402. https://doi.org/10.1016/0039-6028(96)00816-3

    Article  Google Scholar 

  26. Foiles, S.M., Phys. Rev. B, 1985, vol. 32, no. 6, pp. 3409–3415. https://doi.org/10.1103/PhysRevB.32.3409

    Article  CAS  Google Scholar 

  27. Asta, M. and Foiles, S.M., Phys. Rev. B, 1996, vol. 53, no. 5, pp. 2389–2404. https://doi.org/10.1103/physrevb.53.2389

    Article  CAS  Google Scholar 

  28. Rupp, M., Int. J. Quantum Chem., 2015, vol. 115, no. 16, pp. 1058–1073. https://doi.org/10.1002/qua.24954

    Article  CAS  Google Scholar 

  29. Rosenblatt, F., Psychol. Rev., 1958, vol. 65, no. 6, pp. 386–408. https://doi.org/10.1037/h0042519

    Article  CAS  PubMed  Google Scholar 

  30. Bishop, C.M., Neural Networks for Pattern Recognition, Oxford: Clarendon, 1995. ISBN 0198538642

    Google Scholar 

  31. Gurney, K., An Introduction to Neural Networks, London: Taylor & Francis, 2004. ISBN 0‑203-45151-1

    Google Scholar 

  32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I., Adv. Neural Inform. Proc. Systems, 2017, vol. 30, pp. 5998–6008. https://doi.org/10.48550/arXiv.1706.03762

    Article  Google Scholar 

  33. Haykin, S., Neural Networks and Learning Machines, 3rd int. ed., New York: Prentice Hall, 2009. ISBN-10: 0131471392

  34. Cybenko, G., Math. Control. Signals, Syst., 1989, vol. 2, pp. 303–314. https://doi.org/10.1007/BF02551274

    Article  Google Scholar 

  35. Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning Internal Representations by Error Propagation, in Parallel Distributed Processing, Rumelhart, D.E. and McClelland, J.L., Eds., vol. 1, Cambridge, MA: MIT Press, 1986, pp. 318–362. https://doi.org/10.1016/B978-1-4832-1446-7.50035-2.

  36. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods of Solution of Incorrect Problems), Moscow: Nauka, 1986, pp. 1–286.

  37. Qian, N., Neuron Networks, 1999, vol. 12, no. 1, pp. 145–151. https://doi.org/10.1016/S0893‑6080(98)00116-6

    Article  CAS  Google Scholar 

  38. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A., APL Mater., 2013, vol. 1, p. 011002. https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  39. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C., JOM, 2013, vol. 65, no. 11, pp. 1501–1509. https://doi.org/10.1007/s11837-013-0755-4

    Article  CAS  Google Scholar 

  40. Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Ruhl, S., and Wolverton, C.L., NPJ Comput. Mater., 2015, vol. 1, no. 1, p. 15010. https://doi.org/10.1038/npjcompumats.2015.10

    Article  CAS  Google Scholar 

  41. Puchala, B., Tarcea, G., Marquis, E.A., Hedstrom, M., Jagadish, H.V., and Allison, J.E., JOM, 2016, vol. 68, no. 8, pp. 2035–2044. https://doi.org/10.1007/s11837-016-1998-7

    Article  Google Scholar 

  42. Draxl, C. and Scheffler, M., MRS Bull., 2018, vol. 43, no. 9, pp. 676–682. https://doi.org/10.1557/mrs.2018.208

    Article  Google Scholar 

  43. Todeschini, R. and Consonni, V., Molecular Descriptors for Chemoinformatics, Weinheim: Wiley-VCH, 2009, p. 1257. https://doi.org/10.1002/9783527628766

  44. Rupp, M., Int. J. Quantum Chem., 2015, vol. 115, no. 16, pp. 1058–1073. https://doi.org/10.1002/qua.24954

    Article  CAS  Google Scholar 

  45. Mueller, T., Kusne, A.G., and Ramprasad, R., Comp. Chem. Rev., 2016, vol. 29, pp. 186–273. https://doi.org/10.1002/9781119148739.ch4

    Article  CAS  Google Scholar 

  46. Hofmann, T., Schölkopf, B., and Smola, A.J., Ann. Stat., 2008, vol. 36, no. 3, pp. 1171–1220. https://doi.org/10.1214/009053607000000677

    Article  Google Scholar 

  47. Schölkopf B., Herbrich R., Smola A.J. A Generalized Representer Theorem, in Computational Learning Theory, Helmbold, D. and Williamson, B., Eds., COLT 2001. Lecture Notes in Computer Science. vol. 2111, Berlin; Heidelberg: Springer, 2001, pp. 416–426. https://doi.org/10.1007/3-540-44581-1_27

  48. V’yugin, V.V., Matematicheskie osnovy mashinnogo obucheniya i prognozirovaniya (Mathematical Foundations of Machine Learning and Prediction), Moscow: MTsNMO, 2014.

  49. Rasmussen, C.E., Gaussian Processes in Machine Learning, in Advanced Lectures on Machine Learning, Bousquet, O., von Luxburg, U., and Rätsch, G., Eds., Lecture Notes in Computer Science, Berlin; Heidelberg: Springer, 2003, vol. 3176, pp. 63–71. https://doi.org/10.1007/978-3-540-28650-9_4

  50. Specht, D.F., IEEE Trans. Neural Netw., 1991, vol. 2, no. 6, pp. 568–576. https://doi.org/10.1109/72.97934

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, Z., Zhou, Y., He, Q., Ding, Z., Li, F., and Yang, Y., Comput. Mater., 2019, vol. 5, no. 128, pp. 1–9. https://doi.org/10.1038/s41524-019-0265-1

    Article  CAS  Google Scholar 

  52. Isayev, O., Oses, C., Toher, C., Gossett, E., Curtarolo, S., and Tropsha, A., Nat. Commun., 2017, vol. 8, p. 15679. https://doi.org/10.1038/ncomms15679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., and Stocks, G.M., JOM, 2015, vol. 67, no. 10, pp. 2350–2363. https://doi.org/10.1007/s11837-015-1594-2

    Article  CAS  Google Scholar 

  54. Turchi, P.E.A., Gonis, A., Drchal, V., and Kudrnovsky, J., Phys. Rev. B, 2001, vol. 64, p. 085112. https://doi.org/10.1103/physrevb.64.085112

    Article  Google Scholar 

  55. Nguyen, A.H., Rosenbrock, C.W., Reese, C.S., and Hart, G.L.W., Phys. Rev. B, 2017, vol. 96, p. 014107. https://doi.org/10.1103/physrevb.96.014107

    Article  CAS  Google Scholar 

  56. Widom, M., J. Mater. Res., 2018, vol. 33, pp. 2881–2898. https://doi.org/10.1557/jmr.2018.222

    Article  CAS  Google Scholar 

  57. Lorenz, S., Groß, A., and Scheffler, M., Chem. Phys. Lett., 2004, vol. 395, nos. 4–6, pp. 210–215. https://doi.org/10.1016/j.cplett.2004.07.076

    Article  CAS  Google Scholar 

  58. Behler, J. and Parrinello, M., Phys. Rev. Lett., 2007, vol. 98, p. 146401. https://doi.org/10.1103/PhysRevLett.98.146401

    Article  CAS  PubMed  Google Scholar 

  59. Artrith, N. and Behler, J., Phys. Rev. B, 2012, vol. 85, p. 045439. https://doi.org/10.1103/physrevb.85.045439

    Article  Google Scholar 

  60. Behler, J., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 40, pp. 17930–17955. https://doi.org/10.1039/C1CP21668F

    Article  CAS  PubMed  Google Scholar 

  61. Behler, J., J. Chem. Phys., 2016, 2011, vol. 145, p. 170901. https://doi.org/10.1063/1.4966192

  62. Behler, J., Angew. Chem., Int. Ed. Engl., 2017, vol. 56, no. 42, pp. 12828–12840. https://doi.org/10.1002/anie.201703114

    Article  CAS  Google Scholar 

  63. Botu, V. and Ramprasad, R., Int. J. Quantum Chem., 2014, vol. 115, no. 16, pp. 1074–1083. https://doi.org/10.1002/qua.24836

    Article  CAS  Google Scholar 

  64. Botu, V. and Ramprasad, R., Phys. Rev. B, 2015, vol. 92, no. 9, p. 094306. https://doi.org/10.1103/physrevb.92.094306

    Article  Google Scholar 

  65. Bartók, A.P., Payne, M.C., and Kondor, R., Phys. Rev. Lett., 2010, vol. 104, p. 136403. https://doi.org/10.1103/physrevlett.104.13640

    Article  PubMed  Google Scholar 

  66. Deringer, V.L. and Csányi, G., Phys. Rev. B, 2017, vol. 95, no. 9, p. 094203. https://doi.org/10.1103/physrevb.95.094203

    Article  CAS  Google Scholar 

  67. Dolgirev, P.E., Kruglov, I.A., and Oganov, A.R., AIP Adv., 2016, vol. 6, no. 8, p. 085318. https://doi.org/10.1063/1.4961886

    Article  CAS  Google Scholar 

  68. Drautz, R., Phys. Rev. B, 2019, vol. 99, no. 1, p. 014104. https://doi.org/10.1103/physrevb.99.014104

    Article  CAS  Google Scholar 

  69. Thompson, A.P., Swiler, L.P., Trott, C.R., Foiles, S.M., and Tucker, G.J., J. Comput. Phys., 2015, vol. 285, pp. 316–330. https://doi.org/10.1016/j.jcp.2014.12.018

    Article  CAS  Google Scholar 

  70. Wood, M.A. and Thompson, A.P., J. Chem. Phys., 2018, vol. 148, no. 24, p. 241721. https://doi.org/10.1063/1.5017641

    Article  CAS  PubMed  Google Scholar 

  71. Wood, M.A., Cusentino, M.A., Wirth, B.D., and Thompson, A.P., Phys. Rev. B, 2019, vol. 99, p. 184305. https://doi.org/10.1103/PhysRevB.99.184305

    Article  CAS  Google Scholar 

  72. Shapeev, A.V., Multiscale Model. Simul., 2016, vol. 14, pp. 1153–1173. https://doi.org/10.1137/15m1054183

    Article  Google Scholar 

  73. Gubaev, K., Podryabinkin, E.V., Hart, G.L.W., and Shapeev, A.V., Comput. Mater. Sci., 2019, vol. 156, pp. 148–156. https://doi.org/10.1016/j.commatsci.2018.09.031

    Article  CAS  Google Scholar 

  74. Gubaev, K., Podryabinkin, E.V., and Shapeev, A.V., J. Chem. Phys., 2018, vol. 148, no. 24, p. 241727. https://doi.org/10.1063/1.5005095

    Article  CAS  PubMed  Google Scholar 

  75. Csányi, G., Willatt, M.J., and Ceriotti, M., Machine-Learning of Atomic-Scale Properties Based on Physical Principles, in Machine Learning Meets Quantum Physics, Schutt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., and Müller, K.R., Eds., Lecture Notes in Physics, Cham: Springer, 2020, vol. 968, pp. 99–127. https://doi.org/10.1007/978-3-030-40245-7_6

  76. Zuo, Y., Chen, C., Li, X.-G., Deng, Z., Chen, Y., Behler, J., Csanyi, G., Shapeev, A.V., Thompson, A.P., Wood, M.A., and Ong, S.P.A., J. Phys. Chem. A, 2020, vol. 124, no. 4, pp. 731–745. https://doi.org/10.1021/acs.jpca.9b08723

    Article  CAS  PubMed  Google Scholar 

  77. Bartók, A.P., Kondor, R., and Csányi, G., Phys. Rev. B, 2013, vol. 87, no. 18, p. 184115. https://doi.org/10.1103/physrevb.87.184115

    Article  Google Scholar 

  78. Zhang, Y., Hu, C., and Jiang, B., J. Phys. Chem. Lett., 2019, vol. 10, pp. 4962–4967. https://doi.org/10.1021/acs.jpclett.9b02037

    Article  CAS  PubMed  Google Scholar 

  79. Chen, C., Ye, W., Zuo, Y., Zheng, C., and Ong, S.P., Chem. Mater., 2019, vol. 31, pp. 3564–3572. https://doi.org/10.1021/acs.chemmater.9b01294

    Article  CAS  Google Scholar 

  80. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Mater. Sci. Eng.: A, 2004, vol. 375–377, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  81. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., and Chang, S.-Y., Adv. Eng. Mater., 2004, vol. 6, pp. 299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  82. Rost, C., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J.-P., Nat. Commun., 2015, vol. 6, p. 8485. https://doi.org/10.1038/ncomms9485

    Article  CAS  PubMed  Google Scholar 

  83. Castle, E., Csanadi, T., Grasso, S., Dusza, J., and Reece, M., Sci. Rep., 2018, vol. 8, p. 8609. https://doi.org/10.1038/s41598-018-26827-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, R., and Luo, L.S., Sci. Rep., 2016, vol. 6, p. 37946. https://doi.org/10.1038/srep37946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gorsse, S., Couzinié, J.P., and Miracle, D.B., C. R. Phys., 2018, vol. 19, pp. 721–736. https://doi.org/10.1016/j.crhy.2018.09.004

    Article  CAS  Google Scholar 

  86. Miracle, D.B. and Senkov, O.N., Acta Mater., 2017, vol. 122, no. 1, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  87. Mukherjee, S., Metals, 2020, vol. 10, no. 9, p. 1253. https://doi.org/10.3390/met10091253

    Article  Google Scholar 

  88. von Barth, U. and Hedin, L., J. Phys. C, 1972, vol. 5, pp. 1629–1642. https://doi.org/10.1088/0022‑3719/5/13/012

    Article  CAS  Google Scholar 

  89. Wang, C.S., Klein, B.M., and Krakauer, H., Phys. Rev. Lett., 1985, vol. 54, no. 16, pp. 1852–1855. https://doi.org/10.1103/physrevlett.54.1852

    Article  CAS  PubMed  Google Scholar 

  90. Saunders, N. and Miodownik, A.P., Calphad (Calculation of Phase Diagrams): A Comprehensive Guide, Oxford; New York: Pergamon, 1998. eBook ISBN:9780080528434

  91. Zhang, F., Zhang, C., Chen, S.L., Zhu, J., Cao, W.S., and Kattner, U.R., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2014, vol. 45, no. 6, pp. 1–10. https://doi.org/10.1016/j.calphad.2013.10.006

    Article  CAS  Google Scholar 

  92. Senkov, O., Miller, J., Miracle, D.B., and Woodward, C., Nat. Commun., 2015, vol. 6, p. 6529. https://doi.org/10.1038/ncomms7529

    Article  CAS  PubMed  Google Scholar 

  93. Ng, C., Guo, S., Luan, J., Shi, S., and Liu, C.T., Intermetallics, 2012, vol. 31, pp. 165– 172. https://doi.org/10.1016/j.intermet.2012.07.001

    Article  CAS  Google Scholar 

  94. Guo, S., Ng, C., Wang, Z., and Liu, S.T., J. Alloys Compd., 2014, vol. 583, pp. 410–413. https://doi.org/10.1016/j.jallcom.2013.08.213

    Article  CAS  Google Scholar 

  95. Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M., Phys. Rev. X, 2015, vol. 5, no. 1, p. 011041. https://doi.org/10.1103/physrevx.5.011041

    Article  Google Scholar 

  96. Ikeda, Y., Grabowski, B., and Kormann, F., Mater. Charact., 2018, vol. 147, no. 1, pp. 464–511. https://doi.org/10.1016/j.matchar.2018.06.019

    Article  CAS  Google Scholar 

  97. Van de Walle, A. and Ceder, G., Rev. Mod. Phys., 2002, vol. 74, no. 1, pp. 11–45. https://doi.org/10.1103/revmodphys.74.11

    Article  CAS  Google Scholar 

  98. Ruban, A.V. and Abrikosov, I.A., Rep. Prog. Phys., 2008, vol. 71, no. 4, p. 046501. https://doi.org/10.1088/0034-4885/71/4/046501

    Article  CAS  Google Scholar 

  99. Blöchl, P.E., Phys. Rev. B, 1994, vol. 50, pp. 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  100. Kresse, G. and Furthmüller, J., Comp. Mater. Sci., 1996, vol. 6, pp. 15–50. https://doi.org/10.1016/0927‑0256(96)00008-0

    Article  CAS  Google Scholar 

  101. Zunger, A., Wei, S.-H., Ferreira, L.G., and Bernard, J.E., Phys. Rev. Lett., 1990, vol. 65, pp. 353–356. https://doi.org/10.1103/PhysRevLett.65.353

    Article  CAS  PubMed  Google Scholar 

  102. Tamm, A., Aabloo, A., Klintenberg, M., Stocks, M., and Caro, A., Acta Mater., 2015, vol. 99, pp. 307–312. https://doi.org/10.1016/j.actamat.2015.08.015

    Article  CAS  Google Scholar 

  103. von Barth, U. and Hedin, L., J. Phys. C, vol. 5, pp. 1629–1642. https://doi.org/10.1088/0022‑3719/5/13/012

  104. Wang, C.S., Klein, B.M., and Krakauer, H., Phys. Rev. Lett., 1985, vol. 54, no. 16, pp. 1852–1855. https://doi.org/10.1103/physrevlett.54.1852

    Article  CAS  PubMed  Google Scholar 

  105. Lederer, Y., Toher, C., Vecchio, K.S., and Curtarolo, S., Acta Mater., 2018, vol. 159, pp. 364–383. https://doi.org/10.1016/j.actamat.2018.07.042

    Article  CAS  Google Scholar 

  106. Oses, C., Toher, C., and Curtarolo, S., Nat. Rev. Mater., 2020, vol. 5, pp. 295–309. https://doi.org/10.1038/s41578-019-0170-8

    Article  CAS  Google Scholar 

  107. Soven, P., Phys. Rev., 1967, vol. 156, no. 3, pp. 809–811. https://doi.org/10.1103/physrev.156.809

    Article  CAS  Google Scholar 

  108. Singh, P., Smirnov, A.V., and Johnson, D.D., Phys. Rev. Mater., 2018, vol. 2, no. 5, p. 055004. https://doi.org/10.1103/physrevmaterials.2.05

    Article  CAS  Google Scholar 

  109. Kormann, F., Ruban, A.V., and Sluiter, M.H.F., Mater. Res. Lett., 2016, vol. 5, no. 1, pp. 35–40. https://doi.org/10.1080/21663831.2016.1198837

    Article  CAS  Google Scholar 

  110. Tian, F., Varga, L.K., Chen, N., Delczeg, L., and Vitos, L., Phys. Rev. B, 2013, vol. 87, no. 7, p. 075144. https://doi.org/10.1103/physrevb.87.075144

    Article  Google Scholar 

  111. Zhao, S., Stocks, G.M., and Zhang, Y., Acta Mater., 2017, vol. 134, pp. 334–345. https://doi.org/10.1016/j.actamat.2017.05.001

    Article  CAS  Google Scholar 

  112. Sanchez, J.M., Phys. Rev. B, 2010, vol. 81, p. 224202. https://doi.org/10.1103/physrevb.81.224202

    Article  Google Scholar 

  113. Shapeev, A., Comput. Mater. Sci., 2017, vol. 139, pp. 26–30. https://doi.org/10.1016/j.commatsci.2017.07.0

    Article  CAS  Google Scholar 

  114. Aitken, Z.H., Sorkin, V., and Zhang, Y.-W., J. Mater. Res., 2019, vol. 34, pp. 1509–1532. https://doi.org/10.1557/jmr.2019.50

    Article  CAS  Google Scholar 

  115. Ghasemi, S.A., Hofstetter, A., Saha, S., and Goedecker, S., Phys. Rev. B, 2015, vol. 92, p. 045131. https://doi.org/10.1103/physrevb.92.045131

    Article  Google Scholar 

  116. Hajinazar, S., Shao, J., and Kolmogorov, A.N., Phys. Rev. B, 2017, vol. 95, no. 1, p. 014114. https://doi.org/10.1103/physrevb.95.014114

    Article  CAS  Google Scholar 

  117. Watanabe, S., Li, W., Jeong, W., Lee, D., Shimizu, K., Mimanitani, E., and Ando, Y., and Han, S., J. Phys. Energy, 2021, vol. 3, p. 012003. https://doi.org/10.1088/2515-7655/abc7f3

    Article  CAS  Google Scholar 

  118. Von Lilienfeld, O.A., Muller, K.-R., and Tkatchenko, A., Nat. Rev. Chem., 2020, vol. 4, pp. 347–358. https://doi.org/10.1038/s41570-020-0189-9

    Article  Google Scholar 

  119. Eckhoff, M. and Behler, J., J. Chem. Theory Comput., 2019, vol. 15, no. 6, pp. 3793–3809. https://doi.org/10.1021/acs.jctc.8b01288

    Article  CAS  PubMed  Google Scholar 

  120. Bartók, A.P. and Csányi, G., Int. J. Quantum Chem., 2015, vol. 115, pp. 1051–1057. https://doi.org/10.1002/qua.24927

    Article  CAS  Google Scholar 

  121. Wood, M.A., Cusentino, M.A., Wirth, B.D., and Thompson, A.P., Phys. Rev. B, 2019, vol. 99, no. 18, p. 184305. https://doi.org/10.1103/physrevb.99.184305

    Article  CAS  Google Scholar 

  122. Rosenbrock, C.W., Gubaev, K., Shapeev, A.V., Pártay, L.B., Bernstein, N., Csányi, G., and Hart, G.L.W., Npj Comput. Mater., 2021, vol. 7, p. 24. https://doi.org/10.1038/s41524-020-00477-2

    Article  CAS  Google Scholar 

  123. Shapeev, A., Comput. Mater. Sci., 2017, vol. 139, pp. 26–30. https://doi.org/10.1016/j.commatsci.2017.07.010

    Article  CAS  Google Scholar 

  124. Meshkov, E.A., Novoselov, I.I., Yanilkin, A.V., Rogozhkin, S.V., Nikitin, A.A., Khomich, A.A., Shutov, A.S., Tarasov, B.A., Danilov, S.E., and Arbuzov, V.L., Phys. Solid State, 2020, vol. 62, pp. 389–400. https://doi.org/10.1134/S1063783420030130

    Article  CAS  Google Scholar 

  125. Kostyuchenko, T.S., Candidate’s Dissertation in Physics and Mathematics, Moscow: Moscow Institute of Physics and Technology, 2021.

  126. DeVita, A. and Car, R., MRS Online Proc. Lib., 1997, pp. 473–480. https://doi.org/10.1557/PROC-491-73

  127. Csányi, G., Albaret, T., Payne, M.C., and De Vita, A., Phys. Rev. Lett., 2004, vol. 93, no. 17, p. 175503. https://doi.org/10.1103/physrevlett.93.175503

    Article  PubMed  Google Scholar 

  128. Artrith, N. and Behler, J., Phys. Rev. B, 2012, vol. 85, no. 4, p. 045439. https://doi.org/10.1103/physrevb.85.045439

    Article  Google Scholar 

  129. Artrith, N. and Urban, A., Comput. Mater. Sci., 2016, vol. 114, pp. 135–150. https://doi.org/10.1016/j.commatsci.2015.11.047

    Article  CAS  Google Scholar 

  130. Deringer, V.L., Proserpio, D.M., Csányi, G., and Pickard, C.J., Faraday Discuss., 2018, vol. 211, pp. 45–59. https://doi.org/10.1039/c8fd00034d

    Article  CAS  PubMed  Google Scholar 

  131. Podryabinkin, E.V. and Shapeev, A.V., Comput. Mater. Sci., 2017, vol. 140, pp. 171–180. https://doi.org/10.1016/j.commatsci.2017.08.031

    Article  CAS  Google Scholar 

  132. Zhang, X., Grabowsk, B., Kormann, F., Ruban, A.V., Gong, Y., Reed, R.C., Hickel, T., and Neugebauer, J., Phys. Rev. B, 2018, vol. 98, no. 22, p. 224106. https://doi.org/10.1103/physrevb.98.224106

    Article  CAS  Google Scholar 

  133. Grabowski, B., Ikeda, Y., Srinivasan, P., Kormann, F., Freysoldt, C., Duff, A.I., Shapeev, A., and Neugebauer, J., Comput. Mater., 2019, vol. 5, p. 80. https://doi.org/10.1038/s41524-019-0218-8

    Article  CAS  Google Scholar 

  134. Duff, A.I., Davey, T., Korbmacher, D., Glensk, A., Grabowski, B., Neugebauer, J., and Finnis, M.W., Phys. Rev. B, 2015, vol. 91, no. 21, p. 214311. https://doi.org/10.1103/physrevb.91.214311

  135. Meshkov, E., Novoselov, I., Shapeev, A.V., and Yanilkin, A.V., Intermetallics, 2019, vol. 112, p. 106542. https://doi.org/10.1016/j.intermet.2019.106542

    Article  CAS  Google Scholar 

  136. Balyakin, A., Yuryev, A., Gelchinski, B., and Rempel, A., J. Phys. Condens. Matter, 2020, vol. 32, p. 214006. https://doi.org/10.1088/1361-648X/ab6f87

    Article  CAS  PubMed  Google Scholar 

  137. Jafary-Zadeh, M., Khoo, K.H., Laskowski, R., Branicio, P.S., and Shapeev, A., J. Alloys Compd., 2019, vol. 803, pp. 1054–1062. https://doi.org/10.1016/j.jallcom.2019.06.318

    Article  CAS  Google Scholar 

  138. Cowley, J.M., Phys. Rev., 1950, vol. 77, no. 5, pp. 669–675. https://doi.org/10.1103/physrev.77.669

    Article  CAS  Google Scholar 

  139. Niu, C., LaRosa, C.R., Mills, M.J., and Ghazisaeidi, M., Nat. Commun., 2018, vol. 9, p. 1363. https://doi.org/10.1038/s41467-018-03846-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, R., Zhao, S., Ding, J., Chong, Y., Jia, T., Ophus, C., Asta, M., Ritchie, R.O., and Minor, A., Nature, 2020, vol. 581, pp. 283–287. https://doi.org/10.1038/s41586-020-2275-z

    Article  CAS  PubMed  Google Scholar 

  141. Ikeda, Y., Gubaev, K., Neugebauer, J., Grabowski, B., and Körmann, F., Comput. Mater., 2021, vol. 7, p. 34. https://doi.org/10.1038/s41524-021-00502-y

    Article  CAS  Google Scholar 

  142. Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., and Liu, C.T., Scr. Mater., 2017, vol. 130, no. 3, pp. 96–99. https://doi.org/10.1016/j.scriptamat.2016.11.014

  143. Ikeda, Y., Körmann, F., Tanaka, I., and Neugebauer, J., Entropy, 2018, vol. 20, no. 9, p. 655. https://doi.org/10.3390/e20090655

    Article  CAS  PubMed Central  Google Scholar 

  144. Wu, Z., Parish, C., and Bei, H., J. Alloys Compd., 2015, vol. 647, pp. 815–822. https://doi.org/10.1016/j.jallcom.2015.05.224

    Article  CAS  Google Scholar 

  145. Ikeda, Y., Tanaka, I., Neugebauer, J., and Körmann, F., Phys. Rev. Mater., 2019, vol. 3, no. 11, p. 113603. https://doi.org/10.1103/physrevmaterials.3.11.113603

    Article  CAS  Google Scholar 

  146. Li, Z., Acta Mater., 2019, vol. 164, pp. 400–412. https://doi.org/10.1016/j.actamat.2018.10.050

    Article  CAS  Google Scholar 

  147. Hu, J., Shen, H., Jiang, M., Gong, H., Xiao, H., Liu, Z., Sun, G., and Zu, X., Nanomaterials, 2019, vol. 9, no. 3, p. 461. https://doi.org/10.3390/nano9030461

    Article  CAS  PubMed Central  Google Scholar 

  148. Hu, J., Zhang, J., Xiao, H., Hu, J., Zhang, J., Xiao, H., Xie, L., Shen, H., Li, P., and Zu, X., Inorg. Chem., 2020, vol. 59, no. 14, pp. 9774–9782. https://doi.org/10.1021/acs.inorgchem.0c00989

    Article  CAS  PubMed  Google Scholar 

  149. Batchelor, T.A., Pedersen, J.K., Winther, S.H., Castelli, I.E., Jacobsen, K.W., and Rossmeisl, J., Joul, 2019, vol. 3, no. 3, pp. 834–845. https://doi.org/10.1016/j.joule.2018.12.015

    Article  CAS  Google Scholar 

  150. Pedersen, J.K., Batchelor, T.A., Bagger, A., and Rossmeisl, J., ACS Catal., 2020, vol. 10, pp. 2169–2176. https://doi.org/10.1021/acscatal.9b04343

    Article  CAS  Google Scholar 

  151. Stevanović, V., Lany, S., Zhang, X., and Zunger, A., Phys. Rev. B, 2012, vol. 5, no. 11, p. 115104. https://doi.org/10.1103/physrevb.85.115104

    Article  Google Scholar 

  152. Yang, Y., Wang, W., Gan, G.-Y., Shi, X.-F., and Tang, B.-Y., Phys. B: Condens. Matter, 2018, vol. 550, pp. 163–170. https://doi.org/10.1016/j.physb.2018.09.014

    Article  CAS  Google Scholar 

  153. Miracle, D.B. and Senkov, O.N., Acta Mater., 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  154. Lewin, E., J. Appl. Phys., 2020, vol. 127, no. 16, p. 160901. https://doi.org/10.1063/1.5144154

    Article  CAS  Google Scholar 

  155. Gelchinski, B.R., Balyakin, I.A., Yuriev, A.A., and Rempel, A.A., Russ. Chem. Rev., 2022, vol. 91, p. RCR5023. https://doi.org/10.1070/RCR5023

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, (project no. 21-43-00015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rempel.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzoev, A.A., Gelchinski, B.R. & Rempel, A.A. Neural Network Prediction of Interatomic Interaction in Multielement Substances and High-Entropy Alloys: A Review. Dokl Phys Chem 504, 51–77 (2022). https://doi.org/10.1134/S0012501622700026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622700026

Keywords:

Navigation