Skip to main content
Log in

Synthesis of Ultra-High-Molecular-Weight Polyethylene with an Elevated Melting Point in an Octafluorobutane Medium

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Ultra-high-molecular-weight polyethylene (UHMWPE) with an elevated melting point Tm of up to 144°C has been successfully fabricated by suspension polymerization initiated by Ziegler–Natta catalysts in a 1H,4H-octafluorobutane medium. This method allows one to efficiently perform the polymerization at a near-ambient temperature and a near-atmospheric ethylene pressure. The obtained polyethylenes have been characterized by IR spectroscopy, elemental analysis, and thermal analysis, and the melting points and degrees of crystallinity of the synthesized polymers have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

REFERENCES

  1. The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, 1st ed., Kurtz, S., Ed., New York: Academic, 2004.

    Google Scholar 

  2. Stein, H.L., Ultrahigh molecular weight polyethylenes (UHMWPE), in: Engineered Materials Handbook, 1998, vol. 2, p. 167.

  3. Handbook of Fiber Science and Technology, vol. 3: High Technology Fibers, Lewin, M. and Preston, J., Eds., CRC Press, 1996.

    Google Scholar 

  4. Antonov, A.A. and Bryliakov, K.P., Eur. Polym. J., 2021, vol. 142. https://doi.org/10.1016/j.eurpolymj.2020.110162

  5. Chen, Z., Mesgar, M., White, P.S., Daugulis, O., and Brookhart, M., ACS Catal., 2015, vol. 5, no. 2, pp. 631–636. https://doi.org/10.1021/cs501948d

    Article  CAS  Google Scholar 

  6. Zou, C., Dai, S., and Chen, C., Macromolecules, 2018, vol. 51, pp. 49–56. https://doi.org/10.1021/acs.macromol.7b02156

    Article  CAS  Google Scholar 

  7. Tan, C., Pang, W.M., and Chen, C.L., Chinese J. Polym. Sci., 2019, vol. 37, pp. 974–980. https://doi.org/10.1007/s10118-019-2232-1

    Article  CAS  Google Scholar 

  8. Sun, M., Mu, Y., Wu, Q., Gao, W., and Ye, L., New J. Chem., 2010, vol. 34, pp. 2979–2987. https://doi.org/10.1039/c0nj00439a

    Article  CAS  Google Scholar 

  9. Romano, D., Ronca, S., and Rastogi, S., Macromol. Rapid Commun., 2015, vol. 36, no. 3, pp. 327–331. https://doi.org/10.1002/marc.201400514

    Article  CAS  PubMed  Google Scholar 

  10. Huang, C., Vignesh, A., Bariashir, C., Ma, Y., Sun, Y., and Sun, W.-H., New J. Chem., 2019, vol. 43, pp. 11307–11315. https://doi.org/10.1039/C9NJ02793A

    Article  CAS  Google Scholar 

  11. Spronck, M., Klein, A., Blom, B., and Romano, D.Z., Anorg. Allg. Chem., 2018, vol. 644, pp. 993–998. https://doi.org/10.1002/zaac.201800165

    Article  CAS  Google Scholar 

  12. Tuskaev, V.A., Gagieva, S.Ch., Kurmaev, D.A., Bogdanov, V.S., Magomedov, K.F., Mikhaylik, E.S., Golubev, E.K., Buzin, M.I., Nikiforova, G.G., Vasil’ev, V.G., Khrustalev, V.N., Dorovatovskii, P.V., Bakirov, A.V., and Shcherbina, M., À., Dzhevakov, P.B., and Bulychev, B.M., Appl. Organomet. Chem., 2021, vol. 35, no. 7. https://doi.org/10.1002/aoc.6256

  13. Liu, K., Wu, Q., Mu, X., Gao, W., and Mu, Y., Polyhedron, 2013, vol. 52, pp. 222–226. https://doi.org/10.1016/j.poly.2012.09.044

    Article  CAS  Google Scholar 

  14. Schnitte, M., Scholliers, J.S., Riedmiller, K., and Mecking, S., Angew. Chem., Int. Ed., 2020, vol. 59, no. 8, pp. 3258–3263. https://doi.org/10.1002/anie.201913117

    Article  CAS  Google Scholar 

  15. Kenyon, P. and Mecking, S., J. Am. Chem. Soc., 2017, vol. 139, no. 39, pp. 13786–13790. https://doi.org/10.1021/jacs.7b06745

    Article  CAS  PubMed  Google Scholar 

  16. Nesyn, G.V., Stankevich, V.S., Suleimanova, Yu.V., Sheludchenko, S.S., Eremkin, S.M., and Kazakov, Yu.M., RF Patent 2443720 C1, 2010.

  17. Rusinov, P.G., Balashov, A.V., and Nifant’ev, I.E., RF Patent 2579583 C1, 2015.

  18. Yakovlev, S.V., Artem’ev, G.A., Rasputin, N.A., Rusinov, P.G., Nifant’ev, I.E., Charushin, V.N., and Kopchuk, D.S., AIP Conf. Proc., 2019, vol. 2063. https://doi.org/10.1063/1.5087399

  19. Rasputin, N.A., Yakovlev, S.V., Artem’ev, G.A., Rusinov, P.G., Nifant’ev, I.E., Nikonov, I.L., and Kopchuk, D.S., Russ. J. Appl. Chem., 2021, vol. 94, no. 6, pp. 736–740. https://doi.org/10.1134/S1070427221060069

    Article  CAS  Google Scholar 

  20. Yan, Q., Tsutsumi, K., and Nomura, K., RSC Adv., 2017, vol. 7, pp. 41345–41358. https://doi.org/10.1039/c7ra07581b

    Article  CAS  Google Scholar 

  21. Guo, L., Dai, S., and Chen, C., Polymers, 2016, vol. 8, no. 2. https://doi.org/10.3390/polym8020037

  22. Tran, Q.H., Brookhart, M., and Daugulis, O., J. Am. Chem. Soc., 2020, vol. 142, no. 15, pp. 7198–7206. https://doi.org/10.1021/jacs.0c02045

    Article  CAS  PubMed  Google Scholar 

  23. Kenyon, P., Worner, M., and Mecking, S., J. Am. Chem. Soc., 2018, vol. 140, no. 21, pp. 6685–6689. https://doi.org/10.1021/jacs.8b03223

    Article  CAS  PubMed  Google Scholar 

  24. Dai, S., Zhou, S., Zhang, W., and Chen, C., Macromolecules, 2016, vol. 49, no. 23, pp. 8855–8862. https://doi.org/10.1021/acs.macromol.6b02104

    Article  CAS  Google Scholar 

  25. Dai, S. and Chen, C., Angew. Chem., Int. Ed., 2016, vol. 55, no. 42, pp. 13281–13285. https://doi.org/10.1002/anie.201607152

    Article  CAS  Google Scholar 

  26. Liang, T., Goudari, S.B., and Chen, C., Nat. Commun., 2020, vol. 11. https://doi.org/10.1038/s41467-019-14211-0

  27. Antonov, A.A., Sun, W.-H., and Bryliakov, K.P., Sci. China Chem., 2020, vol. 63, no. 6, pp. 753–754. https://doi.org/10.1007/s11426-020-9708-3

    Article  CAS  Google Scholar 

  28. Smith, B.C., Spectroscopy, 2021, vol. 36, no. 9, pp. 24–29. https://doi.org/10.56530/spectroscopy.xp7081p7

    Article  CAS  Google Scholar 

  29. Wunderlich, B., Thermal Analysis, New York: Academic, 1990.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Center for Shared Use of Scientific Equipment “Spectroscopy and Analysis of Organic Compounds,” Postovskii Institute of Organic Synthesis, UB RAS, for conducting IR spectroscopy and elemental analysis of the polymers obtained in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Nikonov.

Ethics declarations

The authors declared no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasputin, N.A., Vlasov, I.A., Yakovlev, S.V. et al. Synthesis of Ultra-High-Molecular-Weight Polyethylene with an Elevated Melting Point in an Octafluorobutane Medium. Dokl Chem 508, 56–61 (2023). https://doi.org/10.1134/S0012500823600141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600141

Keywords:

Navigation