Skip to main content
Log in

Investigation of the Electrical Properties of Carbon Nanofibers–Thermally Expanded Graphite Compacted Composites

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The electrical conductivity of carbon nanofiber–thermally expanded graphite compacted systems at various component mass ratios was investigated. Because the initial carbon nanofibers were not pressed, thermally expanded graphite was added as a binder. The compaction was carried out at a pressure of 11 MPa for 30 min. The AC electrical conductivity was measured in a variable-field frequency range of 25 Hz to 1 MHz during heating from 30 to 100°C. It was found that a decrease in the binder content leads to a narrowing of the electrical conductivity range of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sivaev, I.B., Prikaznov, A.V., and Naoufal, D., Collect. Czech. Chem. Commun., 2010, vol. 75, no. 11, pp. 1149–1199. https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  2. Avdeeva, V.V., Malinina, E.A., Sivaev, I.B., Bregadze, V.I., and Kuznetsov, N.T., Crystals, 2016, vol. 6, p. 60. https://doi.org/10.3390/cryst6050060

    Article  CAS  Google Scholar 

  3. Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Y., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 4, pp. 514–534. https://doi.org/10.1134/S0036023620040026

    Article  CAS  Google Scholar 

  4. Avdeeva, V.V., Polyakova, I.N., Churakov, A.V., Vologzhanina, A.V., Malinina, E.A., Zhizhin, K.Y., and Kuznetsov, N.T., Polyhedron, 2019, vol. 162, pp. 65–70. https://doi.org/10.1016/j.poly.2019.01.051

    Article  CAS  Google Scholar 

  5. Kubasov, A.S., Golubev, A.V., Bykov, A.Yu., Matveev, E.Yu., Zhizhin, K.Yu., and Kuznetsov, N.T., J. Mol. Struct., 2021, vol. 1241, p. 130591. https://doi.org/10.1016/j.molstruc.2021.130591

    Article  CAS  Google Scholar 

  6. Golubev, A.V., Kubasov, A.S., Bykov, A.Yu., Zhizhin, K.Yu., Kravchenko, E.A., Gippius, A.A., Zhurenko, S.V., Semenova, V.A., Korlyukov, A.A., and Kuznetsov, N.T., Inorg. Chem., 2021, vol. 60, no. 12, pp. 8592–8604. https://doi.org/10.1021/acs.inorgchem.1c00516

    Article  CAS  PubMed  Google Scholar 

  7. Kim, K.C., Reed, C.A., Long, G.S., and Sen, A., J. Am. Chem. Soc., 2002, vol. 124, no. 26, pp. 7662–7663. https://doi.org/10.1021/ja0259990

    Article  CAS  PubMed  Google Scholar 

  8. Reed, C.A., Acc. Chem. Res., 2010, vol. 43, no. 1, pp. 121–128. https://doi.org/10.1021/ar900159e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali, F., Hosmane, N.S., and Zhu, Y., Molecules, 2020, vol. 25, no. 4, p. 828. https://doi.org/10.3390/molecules25040828

    Article  CAS  PubMed Central  Google Scholar 

  10. Olejniczak, A.B., Nawrot, B., and Lesnikowski, Z.J., Int. J. Mol. Sci., 2018, vol. 19, p. 3501. https://doi.org/10.3390/ijms19113501

    Article  CAS  PubMed Central  Google Scholar 

  11. Kubasov, A.S., Matveev, E.Y., Turyshev, E.S., Polyakova, I.N., Nichugovskiy, A.I., Zhizhin, K.Y., and Kuznetsov, N.T., Inorg. Chim. Acta, 2018, vol. 477, pp. 277–283. https://doi.org/10.1016/j.ica.2018.03.013

    Article  CAS  Google Scholar 

  12. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, pp. 3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  13. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, no. 2, pp. 339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  14. Yu, J., Lu, K., Sourty, E., Grossiord, N., and Koning, C.E., Carbon, 2007, vol. 45, no. 15, pp. 2897–2903. https://doi.org/10.1016/j.carbon.2007.10.005

    Article  CAS  Google Scholar 

  15. Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., and Loos, J., J. Mater. Chem., 2010, vol. 20, no. 15, pp. 3035–3039. https://doi.org/10.1039/B922604D

    Article  CAS  Google Scholar 

  16. Bannov, A.G., Uvarov, N.F., Ukhina, A.V., Chukanov, I.S., Dyukova, K.D., and Kuvshinov, G.G., Carbon, 2012, vol. 50, no 3, pp. 1090–1098. https://doi.org/10.1016/j.carbon.2011.10.018

    Article  CAS  Google Scholar 

  17. Kuvshinov, D.G., Kurmashov, P.B., Bannov, A.G., Popov, M.V., and Kuvshinov, G.G., Int. J. Hydrogen Energy, 2019, vol. 44, no. 31, pp. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179

    Article  CAS  Google Scholar 

  18. Zavarukhin S.G. et al., Chem. Eng. J., 2008, vol. 137, no. 3, pp. 681–685. https://doi.org/10.1016/j.cej.2007.06.036

    Article  CAS  Google Scholar 

  19. Kuvshinov, G.G., Mogilnykh, Yu.I., Kuvshinov, D.G., Yermakov, D.Yu., Yermakova, M.A., Salanov, A.N., and Rudina, N.A., Carbon, 1999, vol. 37, no. 8, pp. 1239–1246. https://doi.org/10.1016/S0008-6223(98)00320-0

    Article  CAS  Google Scholar 

  20. Pakdee, U. and Thaibunnak, A., J. Nanotechnol., 2019, vol. 2019. https://doi.org/10.1155/2019/3424915

  21. Kim, S., Lee, K.-H., Lee, J.-Y., Kim, K.-K., Choa, Y.-H., and Lim, J.-H., Electron. Mater. Lett., 2019, vol. 15, no. 6, pp. 712–719. https://doi.org/10.1007/s13391-019-00177-0

    Article  CAS  Google Scholar 

  22. Rigoni, F., Freddi, S., Pagliara, S., Drera, G., Sangaletti, L., Suisse, J.-M., Bouvet, M., Malovichko, A.M., Emelianov, A.V., and Bobrinetskiy, I.I., Nanotechnology, 2017, vol. 28, no. 25. https://doi.org/10.1088/1361-6528/aa6da7

  23. Bannov, A.G., Popov, M.V., Brester, A.E., and Kurmashov, P.B., Micromachines, 2021, vol. 12, no. 2, 186. https://doi.org/10.3390/mi12020186

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meshalkin, V.P. and Belyakov, A.V., Processes, 2020, vol. 8, no. 8, pp. 1–37. https://doi.org/10.3390/pr8081004

    Article  CAS  Google Scholar 

  25. Weizman, O., Mead, J., Dodiuk, H., and Kenig, S., Molecules, 2020, vol. 25, no. 20, p. 4824. https://doi.org/10.3390/molecules25204824

    Article  CAS  Google Scholar 

  26. Steksova, Y.P., Berdyugina, I.S., Shibaev, A.A., Ukhina, A.V., Maksimovskii, E.A., Popov, M.V., and Bannov, A.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1588–1595. https://doi.org/10.1134/S1070427216100049

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported under a state assignment of the Ministry of Science and Higher Education of the Russian Federation (code FSUN–2020–0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bannov.

Additional information

Translated by V. Glyanchenko

This work was submitted to the virtual publication “Young Scientists of the Russian Academy of Sciences.“

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapekin, N.I., Shestakov, A.A., Brester, A.E. et al. Investigation of the Electrical Properties of Carbon Nanofibers–Thermally Expanded Graphite Compacted Composites. Dokl Chem 500, 219–223 (2021). https://doi.org/10.1134/S0012500821100049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500821100049

Keywords:

Navigation