Skip to main content
Log in

Activity of Hydroxy Derivatives of Chalcones toward Superoxide Anion Radical

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Trapping activity of new hydroxy derivatives of chalcones toward electrochemically generated superoxide anion radical (\({\text{O}}_{2}^{{\bullet \, - }}\)) in a xanthine/xanthine oxidase enzymatic system upon reduction of nitro blue tetrazolium and during non-enzymatic quinoid oxidation of adrenaline in alkaline medium has been studied. Antiradical activity of new hydroxy derivatives of chalcones toward \({\text{O}}_{2}^{{\bullet \, - }}\) has been established for the first time. Reaction with electrochemically generated \({\text{O}}_{2}^{{\bullet \, - }}\) and higher antiradical activity under adrenaline autooxidation conditions in alkaline medium has been revealed for chalcone containing 2,6-di-tert-butylphenol fragment. Chalcone with two non-shielded OH groups showed the highest trapping activity in xanthine/xanthine oxidase enzymatic system and SOD-protective activity. The inhibiting activity of hydroxy derivatives of chalcones toward \({\text{O}}_{2}^{{\bullet \, - }}\) agrees well with in silico prediction and indicates their ability to decrease probability of oxidative stress development. Correlation has been found between the ability of the studied chalcones to consume superoxide anion radical and inhibiting activity in model systems of peroxide oxidation of oleic acid and tilapia liver lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lambeth, J.D., Free Radic. Biol. Med., 2007, vol. 43, pp. 332–347. https://doi.org/10.1016/j.freeradbiomed.2007.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zabik, N.L., Anwar, S., Ziu, I., and Martic-Milne, S., Electrochim. Acta, 2019, vol. 296, no. 10, pp. 174–180. https://doi.org/10.1016/j.electacta.2018.11.051

    Article  CAS  Google Scholar 

  3. Phaniendra, A., Jestadi, D.B., and Periyasamy, L., Ind. J. Clin. Biochem., 2015, vol. 30, no. 1, pp. 11–26. https://doi.org/10.1007/s12291-014-0446-0

    Article  CAS  Google Scholar 

  4. Hayyan, M., Hashim, M.A., and Al Nashef, I.M., Chem. Rev., 2016, vol. 116, no. 5, pp. 3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407

    Article  CAS  PubMed  Google Scholar 

  5. Adelusi, T.I., Akinbolaji, G.R., Yin, X., Ayinde, K.S., and Olaoba, O.T., Eur. J. Pharmacol., 2021, vol. 891, no. 15, p. 173695. https://doi.org/10.1016/j.ejphar.2020.173695

    Article  CAS  PubMed  Google Scholar 

  6. Janković, T., Turković, N., Kotur-Stevuljević, J., Vujićd, Z., and Ivković, B., Chem.-Biol. Interact., 2020, vol. 324, p. 109084. https://doi.org/10.1016/j.cbi.2020.109084

    Article  CAS  PubMed  Google Scholar 

  7. Zengin, G., Aktumsek, A., Guler, G.O., Cakmak, Y.S., and Yildiztugay, E., Rec. Nat. Prod., 2011, vol. 5, pp. 123–132.

    CAS  Google Scholar 

  8. Zhao, Zh., Cui, X., Ma, X., and Wang, Z., Acta Biochim. Biophys. Sin., 2020, vol. 52, no. 11, pp. 1265–1273. https://doi.org/10.1093/abbs/gmaa124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prochazkova, D., Bousova, I., and Wilhelmova, N., Fitoterapia, 2011, vol. 82, no. 4, pp. 513–523. https://doi.org/10.1093/abbs/gmaa124

    Article  CAS  PubMed  Google Scholar 

  10. Osipova, V.P., Polovinkina, M.A., Telekova, L.R., Velikorodov, A.V., Stepkina, N.N., and Berberova, N.T., Russ. Chem. Bull., 2020, vol. 69, no. 3, pp. 504–509. https://doi.org/10.1007/s11172-020-2790-y

    Article  CAS  Google Scholar 

  11. Magalhães, L.M., Segundo, M.A., Reis, S., and Lima, J., Anal. Chim. Acta, 2008, vol. 613, no. 1, pp. 1–19. https://doi.org/10.1016/j.aca.2008.02.047

  12. Osipova, V., Polovinkina, M., Osipova, A., Gracheva, Yu., and Okhlobystin, A., Turk. J. Chem., 2019, vol. 43, pp. 1336–1349. https://doi.org/10.3906/kim-1904-40

    Article  CAS  Google Scholar 

  13. Zagrean-Tuza, C., Dorneanu, S., and Mot, A.C., Free Radical Biol. Med., 2020, vol. 146, pp. 189–197. https://doi.org/10.1016/j.freeradbiomed.2019.11.006

    Article  CAS  Google Scholar 

  14. Polovinkina, M.A., Kolyada, M.N., Osipova, V.P., Berberova, N.T., Chukicheva, I.Y., Shumova, O.A., and Kutchin, A.V., Dokl. Chem., 2019, vol. 484, no. 5, pp. 568–571. https://doi.org/10.31857/S0869-56524845568-571

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-03-00006а, electrochemical studies, NBT test, adrenaline autooxidation) and by the State Assignment no. 01201354245 (SOD-protective activity of biopreparation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Osipova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polovinkina, M.A., Osipova, V.P., Osipova, A.D. et al. Activity of Hydroxy Derivatives of Chalcones toward Superoxide Anion Radical. Dokl Chem 500, 184–187 (2021). https://doi.org/10.1134/S0012500821090032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500821090032

Keywords:

Navigation