Skip to main content
Log in

Quasigradient Aiming Strategies in Optimal Control Problems for Time-Delay Systems

  • CONTROL THEORY
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider an optimal control problem in which the motion of a dynamical system is described by delay differential equations, the initial conditions are determined by a piecewise continuous function, and a Bolza type cost functional is optimized. The construction of positional control strategies is proposed that permits one to obtain piecewise constant approximations to the optimal control. These strategies use quasigradients of the value functional. Strategies are calculated by searching for points of extremum on a finite-dimensional set. The fact that this set can be finite-dimensional is the main result of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Fizmatlit, 1974.

    Google Scholar 

  2. Berkovitz, L., Optimal feedback controls, SIAM J. Control Optim., 1989, vol. 27, no. 5, pp. 991–1006.

    Article  MathSciNet  MATH  Google Scholar 

  3. Frankowska, H., Optimal trajectories associated with a solution of the contingent Hamilton–Jacobi equation, Appl. Math. Optim., 1989, vol. 19, pp. 291–311.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rowland, J.D.L. and Vinter, R.B., Construction of optimal feedback controls, Syst. Control Lett., 1991, vol. 16, no. 5, pp. 357–367.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H., Ledyaev, Y.S., and Subbotin, A.I., Universal feedback control via proximal aiming in problems of control under disturbance and differential games, Preprint of Centre Rech. Math, Univ. Montreal, Montreal, 1994, no. 2386.

  6. Subbotin, A.I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Berlin: Springer, 1995.

    Book  Google Scholar 

  7. Swiech, A., Sub- and superoptimality principle of dynamic programming revisited, Nonlinear Anal. Theor. Methods Appl., 1996, vol. 26, no. 8, pp. 1429–1436.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardi, M. and Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Boston: Springer, 1997.

    Book  MATH  Google Scholar 

  9. Nobakhtian, S. and Stern, R.J., Universal near-optimal feedbacks, J. Optim. Theor. Appl., 2000, vol. 107, no. 1, pp. 89–122.

    Article  MathSciNet  MATH  Google Scholar 

  10. Osipov, Yu.S., Differential games of systems with aftereffect, Dokl. Akad. Nauk SSSR, 1971, vol. 196, no. 4, pp. 779–782.

    MathSciNet  Google Scholar 

  11. Lukoyanov, N.Yu., Strategies of aiming in the direction of invariant gradients, Prikl. Mat. Mekh., 2004, vol. 68, no. 4, pp. 629–643.

    MathSciNet  MATH  Google Scholar 

  12. Lukoyanov, N.Yu., On optimality conditions for the guaranteed result in control problems for time-delay systems, Proc. Steklov Inst. Math. (Suppl. Iss.), 2010, vol. 268, no. 1, pp. S175–S187.

    Article  MathSciNet  MATH  Google Scholar 

  13. Plaksin, A.R., On Hamilton–Jacobi–Bellman–Isaacs equation for time-delay systems, IFAC-PapersOnLine, 2019, vol. 52, no. 18, pp. 138–143.

    Article  MathSciNet  Google Scholar 

  14. Plaksin, A.R., Minimax and viscosity solutions of Hamilton–Jacobi–Bellman equations for time-delay systems, J. Optim. Theor. Appl., 2020, vol. 187, pp. 22–42.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zverkin, A.M., Kamenskii, G.A., Norkin, S.B., and El’sgol’ts, L.E., Differential equations with a perturbed argument, Russ. Math. Surv., 1962, vol. 17, no. 2, pp. 77–164.

    Article  MATH  Google Scholar 

  16. Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with Discontinuous Right-Hand Side), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  17. Evans, L., Partial Differential Equations, Providence, RI: Am. Math. Soc., 1998.

    MATH  Google Scholar 

  18. Kim, A.V., Functional Differential Equations. Application of \(i\)-Smooth Calculus, Dordrecht: Springer, 1999.

    Book  MATH  Google Scholar 

  19. Bellman, R. and Cooke, K.L., Differential–Difference Equations, New York–London: Academic Press, 1963. Translated under the title: Differentsial’no-raznostnye uravneniya, Moscow: Mir, 1967.

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state order no. 075-01265-22-00 (project no. FEWS-2020-0010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Yu. Lukoyanov or A. R. Plaksin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukoyanov, N.Y., Plaksin, A.R. Quasigradient Aiming Strategies in Optimal Control Problems for Time-Delay Systems. Diff Equat 58, 1514–1524 (2022). https://doi.org/10.1134/S00122661220110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00122661220110076

Navigation