Skip to main content
Log in

Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane

  • SHORT COMMUNICATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

Homogeneous sub-Riemannian geodesics are described for the standard sub-Riemannian structure on the group \({\mathrm {SE}}(2)\) of proper motions of the plane. It is shown that this structure is not geodesically orbital, despite the invariance of the cut time when the initial point is shifted along the geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ambrose, W. and Singer, I.M., On homogeneous Riemannian manifolds, Duke Math. J., 1958, vol. 25, pp. 647–669.

    Article  MathSciNet  Google Scholar 

  2. Kaplan, A., On the geometry of groups of Heisenberg type, Bull. London Math. Soc., 1983, vol. 15, pp. 35–42.

    Article  MathSciNet  Google Scholar 

  3. Kowalski, O. and Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital., 1991, vol. 5, pp. 189–246.

    MathSciNet  MATH  Google Scholar 

  4. Kowalski, D. and Szenthe, J., On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata, 2000, vol. 81, no. 1–3, pp. 209–214.

    Article  MathSciNet  Google Scholar 

  5. Berestovskii, V. and Nikonorov, Yu., Riemannian Manifolds and Homogeneous Geodesics. Springer Monographs in Mathematics, Cham: Springer, 2020.

    Book  Google Scholar 

  6. Berestovskii, V.N., (Locally) shortest arcs of a special sub-Riemannian metric on the Lie group \( {\mathrm {SO}}_0(2,1)\), St. Petersburg Math. J., 2016, vol. 27, pp. 1–14.

    Article  MathSciNet  Google Scholar 

  7. Berestovskii, V.N. and Zubareva, I.A., Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group \({\mathrm {SO}}(3)\), Sib. Math. J., 2015, vol. 56, no. 4, pp. 601–611.

    Article  MathSciNet  Google Scholar 

  8. Berestovskii, V.N. and Gribanova, I.A., Sub-Riemannian distance in the Lie groups \({\mathrm {SU}}(2)\) and \({\mathrm {SO}}(3) \), Sib. Adv. Math., 2015, vol. 18, no. 2, pp. 77–89.

    Article  MathSciNet  Google Scholar 

  9. Berestovskii, V.N. and Zubareva, I.A., Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group \({\mathrm {SL}}(2)\), Sib. Math. J., 2016, vol. 57, no. 3, pp. 411–424.

    Article  MathSciNet  Google Scholar 

  10. Berestovskii, V.N. and Zubareva, I.A., Locally isometric coverings of the Lie group \({\mathrm {SO}}_0(2,1)\) with special sub-Riemannian metric, Sb. Math., 2016, vol. 207, no. 9, pp. 1215–1235.

    Article  MathSciNet  Google Scholar 

  11. Berestovskii, V.N. and Zubareva, I.A., Sub-Riemannian distance on the Lie group \({\mathrm {SO}}_0(2,1)\), St. Petersburg Math. J., 2017, vol. 28, no. 4, pp. 477–489.

    Article  MathSciNet  Google Scholar 

  12. Berestovskii, V.N. and Zubareva, I.A., Sub-Riemannian distance on the Lie group \({\mathrm {SL}}(2)\), Sib. Math. J., 2017, vol. 58, no. 1, pp. 16–27.

    Article  MathSciNet  Google Scholar 

  13. Montgomery, R., A Tour of Subriemannnian Geometries, Their Geodesics and Applications, Providence, RI: Am. Math. Soc., 2002.

    MATH  Google Scholar 

  14. Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian Viewpoint, Cambridge: Cambridge Univ. Press, 2019.

    Book  Google Scholar 

  15. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Fizmatgiz, 1961.

    Google Scholar 

  16. Agrachev, A.A. and Sachkov, Yu.L., Geometricheskaya teoriya upravleniya (Geometric Control Theory), Moscow: Fizmatlit, 2005.

    Google Scholar 

  17. Vershik, A.M. and Gershkovich, V.Ya., Nonholonomic dynamical systems. Geometry of distributions and variational problems, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fund. Napravleniya., 1987, vol. 16, pp. 5–85.

    MathSciNet  MATH  Google Scholar 

  18. Boscain, U. and Rossi, F., Invariant Carnot–Caratheodory metrics on \(S^3 \), \({\mathrm {SO}}(3) \), \({\mathrm {SL}}(2) \) and lens spaces, SIAM J. Control Optim., 2008, vol. 47, pp. 1851–1878.

    Article  MathSciNet  Google Scholar 

  19. Butt, Y.A., Bhatti, A.I., and Sachkov, Yu.L., Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group \({\mathrm {SH}}(2)\), J. Dyn. Control Syst., 2017, vol. 23, pp. 155–195.

    Article  MathSciNet  Google Scholar 

  20. Sachkov, Yu.L., Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane, ESAIM: COCV , 2011, vol. 17, pp. 293–321.

    MathSciNet  MATH  Google Scholar 

  21. Ardentov, A.A. and Sachkov, Yu.L., Cut time in sub-Riemannian problem on Engel group, ESAIM: COCV , 2015, vol. 21, no. 4, pp. 958–988.

    MathSciNet  MATH  Google Scholar 

  22. Moiseev, I. and Sachkov, Yu.L., Maxwell strata in sub-Riemannian problem on the group of motions of a plane, ESAIM: COCV , 2010, vol. 16, pp. 380–399.

    MathSciNet  MATH  Google Scholar 

  23. Sachkov, Yu.L., Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane, ESAIM: COCV , 2010, vol. 16, pp. 1018–1039.

    MathSciNet  MATH  Google Scholar 

  24. Ardentov, A., Bor, G., Le Donne, E., Montgomery, R., and Sachkov, Yu., Bicycle paths, elasticae and sub-Riemannian geometry, Nonlinearity, 2021, vol. 34, pp. 4661–4683.

    Article  MathSciNet  Google Scholar 

  25. Myasnichenko, O., Nilpotent \((3,6) \) sub-Riemannian problem, J. Dyn. Control Syst., 2002, vol. 8, no. 4, pp. 573–597.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A.V. Podobryaev for useful discussions of this work, as well as the referee for valuable information on publications on the topic of the article.

Funding

This work was supported by the Russian Science Foundation, project no. 17-11-01387-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Sachkov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachkov, Y.L. Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane. Diff Equat 57, 1550–1554 (2021). https://doi.org/10.1134/S0012266121110148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121110148

Navigation