INTRODUCTION

In the present paper, we study the Dirac system

$$ B\mathbf {y}^{\prime }+V\mathbf {y}=\lambda \mathbf {y}, $$
(1)

where \(\mathbf {y}=\mathrm {col}\thinspace (y_1(x),y_2(x)) \), \(\lambda \in \mathbb {C} \) is the spectral parameter,

$$ B=\begin {pmatrix} 0&1\\ -1&0 \end {pmatrix},\quad V(x)=\begin {pmatrix} p(x)&q(x)\\ q(x)&-p(x) \end {pmatrix}, $$

and the functions \(p, q\in L_1(0,\pi ) \) are complex-valued, with the two-point boundary conditions

$$ U(\mathbf {y})\equiv C\mathbf {y}(0)+D\mathbf {y}(\pi )=0,$$
(2)

where

$$ C=\begin {pmatrix} a_{{11}}&a_{12}\\ a_{21}&a_{{22}} \end {pmatrix},\quad D=\begin {pmatrix} a_{13} &a_{14}\\ a_{23}&a_{24}\end {pmatrix}, $$

the coefficients \(a_{ij} \) can be any complex numbers, and the rows of the matrix

$$ A=(CD)=\begin {pmatrix} a_{{11}}&a_{12}&a_{13} &a_{14}\\ a_{21}&a_{{22}}&a_{23} &a_{24} \end {pmatrix}$$

are linearly independent.

We denote by \(\|f\|=(|f_1|^2+|f_2|^2)^{1/2} \) the norm of an arbitrary vector \(f=\mathrm {col}\thinspace (f_1,f_2)\in \mathbb {C}^2\) and set \(\langle f,g\rangle =f_1g_1+f_2g_2\). We denote the norm of an arbitrary \( 2\times 2\) matrix \(W \) by \(\|W\|=\sup \limits _{\|f\|=1}\|Wf\|\). Let \(L_{2,2}(a,b) \) be the space of two-dimensional vector functions \(f(t)=\mathrm {col}\thinspace (f_1(t),f_2(t))\) with the norm \( \|f\|_{L_{2,2}(a,b)}=(\int \nolimits _a^b\|f(t)\|\thinspace dt)^{1/2} \), and let \(L_{2,2}^{2,2}(a,b) \) be the space of \(2\times 2 \) matrix functions \(W(t) \) with the norm \( \|W\|_{L_{2,2}^{2,2}(a,b)}=(\int \nolimits _a^b\|W(t)\|\thinspace dt)^{1/2} \). We treat the operator \(\mathbb {L}\mathbf {y}=B\mathbf {y}^{\prime }+V\mathbf {y}\) as a linear operator in the space \( L_{2,2}(0,\pi )\) with domain \(D(\mathbb {L})=\{\mathbf {y}\in W_1^1[0,\pi ]:\mathbb {L}\mathbf {y}\in L_{2,2}(0,\pi ) \), \(U_j(\mathbf {y})=0\) \((j=1,2)\} \).

Let

$$ E(x,\lambda )=\begin {pmatrix} c_1(x,\lambda )&-s_2(x,\lambda )\\ s_1(x,\lambda )&c_2(x,\lambda ) \end {pmatrix}$$

be the fundamental matrix of Eq. (1) with the boundary condition \(E(0,\lambda )=I \), where \(I \) is the identity matrix, and let \(E_0(x,\lambda ) \) be the fundamental matrix of the unperturbed equation \(B\mathbf {y}^{\prime }=\lambda \mathbf {y}\) with the boundary condition \(E_0(0,\lambda )=I\). It is obvious that

$$ E_0(x,\lambda )=\begin {pmatrix} \cos (\lambda x)&-\sin (\lambda x)\\ \sin (\lambda x)&\cos (\lambda x) \end {pmatrix}.$$

It is well known that the entries of the matrix \(E(x,\lambda )\) are related by

$$ c_1(x,\lambda )c_2(x,\lambda )+s_1(x,\lambda )s_2(x,\lambda )=1$$
(3)

for any \(x \) and \(\lambda \). Let \(J_{ij} \) be the determinant formed by the \(i \)th and \(j \)th columns of \(A \). Set \(J_0=J_{12}+J_{34} \), \(J_1=J_{14}-J_{23}\), and \( J_2=J_{13}+J_{24}\).

It was shown in [1] by the transformation operator method that the characteristic determinant \(\Delta (\lambda ) \) of problem (1), (2), which is equal to

$$ \Delta (\lambda ) =J_{12}+J_{34}+J_{14}c_2(\pi ,\lambda ) -J_{23}c_1(\pi ,\lambda )-J_{13}s_2(\pi ,\lambda ) -J_{24}s_1(\pi ,\lambda ), $$
(4)

can be reduced to the form

$$ \Delta (\lambda )=\Delta _0(\lambda )+\int _0^\pi r_1(t)e^{-i\lambda t}\thinspace dt+\int _0^\pi r_2(t)e^{i\lambda t}\thinspace dt=\Delta _0(\lambda )+R(\lambda ),$$
(5)

where the function

$$ \begin {aligned} \Delta _0(\lambda )&=J_0 +J_1\cos (\pi \lambda )-J_2\sin (\pi \lambda )\\ &=J_{12}+J_{34}+\frac {1}{2}\big (e^{i\pi \lambda } (J_1+iJ_2)+e^{-i\pi \lambda }(J_1-iJ_2)\big )=J_0+C_1e^{i\pi \lambda }+C_2e^{-i\pi \lambda }, \end {aligned}$$
(6)

\( C_1=(J_1+iJ_2)/2\), \(C_2=(J_1-iJ_2)/2 \), is the characteristic determinant of the unperturbed problem

$$ B\mathbf {y}^{\prime }=\lambda \mathbf {y},\quad U(\mathbf {y})=0$$
(7)

and the functions \(r_j \) belong to the space \(L_1(0,\pi ) \), \(j=1,2\). If \(p, q\in L_2(0,\pi )\) (for short, we write \(V\in L_2(0,\pi ) \)), then \(r_j\in L_2(0,\pi ) \). It follows that the function \(\Delta (\lambda ) \) is an entire function of exponential type; therefore, we only have the following possibilities for the operator \(\mathbb {L} \) of problem (1), (2):

  1. 1.

    The spectrum is empty.

  2. 2.

    The spectrum is a finite nonempty set.

  3. 3.

    The spectrum is a countable set without finite limit points.

  4. 4.

    The spectrum fills the entire complex plane.

Relations (5) and (6) imply that case 1 is realized for problem (7), for example, with the boundary conditions defined by the matrix

$$ A=\begin {pmatrix} 1&i&-1&i\\ 1&-i&1&i \end {pmatrix},$$

and case 4, with the boundary conditions defined by the matrix

$$ A=\begin {pmatrix} 1&-i&0&0\\ 0&0&i&1 \end {pmatrix}.$$

Let us prove that case 2 is impossible. Let the equation

$$ \Delta (\lambda )=0 $$

have finitely many roots \(\lambda _k \), \(k={1,\ldots ,n}\). If \(C_1C_2\ne 0 \), then conditions (2) are regular and problem (1), (2) has a countable set of eigenvalues; therefore, \(C_1C_2=0\). Set \(P(\lambda )=\prod _{k=1}^n(\lambda -\lambda _k)\). By [2],

$$ \Delta (\lambda )=P(\lambda )e^{a\lambda +b},$$

where \(a \) and \(b \) are some constants. Assume, for example, that \(C_2=0 \). Setting \(\lambda =-iy \) in relation (5), where \(y>0\), we obtain

$$ J_0+C_1e^{\pi y}+R(-iy)=P(-iy)e^{-iay+b},$$

which implies that

$$ J_0e^{-\pi y}+C_1+e^{-\pi y}R(-iy)=P(-iy)e^{b-i\thinspace \mathrm {Re}\thinspace a y}e^{(\mathrm {Im}\thinspace a-\pi )y}. $$
(8)

According to [3, p. 36], the expression on the left-hand side in relation (8) tends to \(C_1 \) as \(y\to \infty \). If \(\mathrm {Im}\thinspace a-\pi \ge 0\), then the expression on the right-hand side in relation (8) tends to infinity in absolute value, and if \(\mathrm {Im}\thinspace a-\pi <0\), then it tends to zero. It follows that \( C_1=0\). If \(C_1=C_2=0 \), then

$$ R(\lambda )=P(\lambda )e^{a\lambda +b}. $$
(9)

Obviously, the left-hand side of relation (9) is bounded on the real axis, while the right-hand side is not; that is, we arrive at a contradiction.

Definition.

We say that problem (1), (2) has the classical spectral asymptotics if its spectrum is a countable set and the multiplicities of the eigenvalues are uniformly bounded.

The present paper is aimed at constructing problems (1), (2) for which case 3 is realized and the multiplicities of the eigenvalues grow unboundedly, i.e., problems with nonclassical spectral asymptotics.

MAIN RESULTS

Set \( c_j(\lambda )=c_j(\pi ,\lambda )\) and \(s_j(\lambda )=s_j(\pi ,\lambda )\), \(j=1,2 \). In addition, let \(PW_\sigma \) be the class of entire functions \(f(z) \) of the exponential type \(\le \sigma \) such that \(\|f\|_{L_2(R)}<\infty \). It is well known [4] that the functions \(c_j(\lambda ) \) and \(s_j(\lambda ) \) admit the representation

$$ c_j(\lambda )=\cos (\pi \lambda )+g_j(\lambda ),\quad s_j(\lambda )=\sin (\pi \lambda )+h_j(\lambda ), $$

where \(g_j,h_j\in PW_\pi \), \(j=1,2 \).

Lemma 1 [5].

The functions \(u(\lambda ) \) and \( v(\lambda )\) admit the representations

$$ u(\lambda )=\sin (\pi \lambda )+h(\lambda ),\quad v(\lambda )=\cos (\pi \lambda )+g(\lambda ), $$

where \( h,g\in PW_\pi \) , if and only if

$$ u(\lambda )=-\pi (\lambda _0 -\lambda )\prod _{\substack {n=-\infty \\ n\ne 0}}^\infty \frac {\lambda _n-\lambda }{n}, $$

where \( \lambda _n=n+\varepsilon _n\) and \(\{\varepsilon _n\}\in l_2 \) , and

$$ v(\lambda )=\prod _{n=-\infty }^\infty \frac {\lambda _n-\lambda }{n-1/2}, $$

where \( \lambda _n=n-1/2+\kappa _n\) and \(\{\kappa _n\}\in l_2 \) .

Consider the Dirac system with the boundary conditions defined by the matrix

$$ A=\begin {pmatrix} 1&0&0&1\\ 0&1&1&0 \end {pmatrix}. $$
(10)

We will assume that \(V\in L_2(0,\pi ) \). It follows from the representation (4) that the characteristic determinant \(\Delta (\lambda ) \) of problem (1), (2) with matrix \(A \) defined in (10) can be reduced to the form

$$ \Delta (\lambda )=s_1(\lambda )-s_2(\lambda )=\int _{-\pi }^\pi r(t)e^{i\lambda t}\thinspace dt=f(\lambda ), $$

where \(r\in L_2(0,\pi )\), and \(f\in PW_\pi \). The converse statement holds true as well.

Theorem.

For each function \(f\in PW_\pi \), there exists a potential \(V\in L_2(0,\pi )\) such that the characteristic determinant \(\Delta (\lambda ) \) of problem (1), (2) with the matrix \(A\) defined by relation (10) and the potential \(V(x) \) is identically equal to \( f(\lambda )\).

Proof. Let \(f(\lambda ) \) be an arbitrary function in the class \(PW_\pi \). It follows from the Paley–Wiener theorem and [3, p. 36] that

$$ \lim \limits _{|\lambda |\to \infty }e^{-\pi |\mathrm {Im}\thinspace \lambda |}f(\lambda )=0;$$
(11)

consequently, there exists a positive integer \(N_0\) so large that \(|f(\lambda )|<1/100\) if \(\mathrm {Im}\thinspace \lambda =0\) and \(|\mathrm {Re}\thinspace \lambda |\ge N_0\).

Let \(\{\lambda _n\}\) , \(n\in \mathbb {Z}\) , be a strictly monotone increasing sequence of real numbers such that \( N_0<\lambda _n<N_0+1/100\) if \(1\le n\le N_0\) , \(\lambda _n=n-1/2\) if \(n>N_0\) , and \( \lambda _n=-\lambda _{-n+1}\) for any \(n\). Set

$$ c(\lambda )=\prod _{n=-\infty }^\infty \frac {\lambda _n-\lambda }{n-1/2}.$$

Lemma 1 implies the relation

$$ c(\lambda )=\cos (\pi \lambda )+g(\lambda ), $$
(12)

where \(g\in PW_\pi \). It follows from the Paley–Wiener theorem and [3, p. 36] that

$$ \lim \limits _{|\lambda |\to \infty } e^{-\pi |\mathrm {Im}\thinspace \lambda |}g(\lambda )=0;$$

therefore,

$$ \big |c(\lambda )\big |\ge c_0e^{\pi |\mathrm {Im}\thinspace \lambda |}$$
(13)

(\(c_0=\mathrm {const}>0 \)) for \(|\mathrm {Im}\thinspace \lambda |\ge M\), where \(M \) is a sufficiently large number.

Differentiating relation (12), we obtain

$$ \dot c(\lambda )=-\pi \sin (\pi \lambda )+\dot g(\lambda ).$$
(14)

Since the function \(\dot g \) belongs to the class \(PW_\pi \), we have, according to [6],

$$ \dot c(\lambda _n)=-\pi \sin (\pi \lambda _n)+\tau _n, $$

where

$$ \sum _{n=-\infty }^\infty |\tau _n|^2<\infty . $$

Based on this, by the definition of the numbers \(\lambda _n \), we obtain

$$ \dot c(\lambda _n)=\pi (-1)^n+\rho _n, $$
(15)

where

$$ \sum _{n=-\infty }^\infty |\rho _n|^2<\infty . $$

Consequently, for all even \(n \) sufficiently large in modulus one has the inequality \(\dot c(\lambda _n)>0\). One can readily see that the inequality \(\dot c(\lambda _n)\dot c(\lambda _{n+1})<0\) holds for all \(n\in \mathbb {Z}\). It follows that

$$ (-1)^n\dot c(\lambda _n)>0 $$
(16)

for all \(n\in \mathbb {Z}\). Note that (15) implies the relation

$$ \frac {1}{\dot c(\lambda _n)}=\frac {(-1)^n}{\pi }+\sigma _n,$$
(17)

where

$$ \sum _{n=-\infty }^\infty |\sigma _n|^2<\infty . $$

Consider the quadratic equation

$$ w^2+f(\lambda _n)w-1=0.$$
(18)

It has the roots

$$ s_n^{\pm }=\frac {-f(\lambda _n)\pm \sqrt {f^2(\lambda _n)+4}}{2}. $$

By \(\Gamma (z,r)\) we denote the disk of radius \(r\) centered at point \(z \). One can readily see that all numbers \(s_n^{+} \) lie inside the disk \(\Gamma (1,1/10) \) and all numbers \(s_n^{-} \) lie inside the disk \(\Gamma (-1,1/10) \). Let \(s_n=s_n^{+} \) if \(n \) is odd and \(s_n=s_n^{-} \) if \(n \) is even. Since [6] \(\{f(\lambda _n)\}\in l_2 \), it follows from the definition of the numbers \(s_n \) that

$$ s_n=(-1)^{n+1}+\vartheta _n, $$
(19)

where \(\{\vartheta _n\}\in l_2 \). It also follows from the definition of the numbers \(s_n \) and inequality (16) that all numbers \(z_n={s_n}/{\dot c(\lambda _n)} \) lie strictly to the left of the imaginary axis, while (17) and (19) imply the relation

$$ z_n=-\frac {1}{\pi }+\rho _n,$$

where \(\{\rho _n\}\in l_2 \). Let \(\beta _n=s_n-\sin (\pi \lambda _n)\); then \(\{\beta _n\}\in l_2 \) in view of (19). Set

$$ h(\lambda )=c(\lambda )\sum _{n=-\infty }^\infty \frac {\beta _n}{\dot c(\lambda _n)(\lambda -\lambda _n)}. $$

According to [7, p. 120], the function \(h \) belongs to the class \(PW_\pi \), and \(h(\lambda _n)=\beta _n \). Set \(s(\lambda )=\sin (\pi \lambda )+h(\lambda )\); then \(s(\lambda _n)=s_n\ne 0 \), and consequently, the functions \(s(\lambda ) \) and \(c(\lambda ) \) do not have common roots.

Set

$$ Y_0(x,\lambda )= \begin {pmatrix} \cos (\lambda x)\\ \sin (\lambda x) \end {pmatrix}.$$

In the subsequent exposition, we need the following elementary assertion.

Lemma 2.

If function systems \( \{\varphi _n\}\) and \( \{\psi _n\}\) are complete in \(L_2(a,b)\) \((n\in \mathbb {N}) \) , then the system of vectors

$$ \Psi _{n,n}=\begin {pmatrix} \{\varphi _n\}\\ \{\psi _n\} \end {pmatrix} \cup \begin {pmatrix} \{\varphi _n\}\\ \{-\psi _n\} \end {pmatrix} $$

is complete in \( L_{2,2}(a,b)\) .

Proof. Assume that there exists a vector \(f(x)=\mathrm {col}\thinspace (f_1(x),f_2(x))\ne 0\) such that

$$ \int _a^b\big (\varphi _n(x)\overline {f_1(x)}+\psi _n(x) \overline {f_2(x)}\thinspace \big )\thinspace dx=0,\quad \int _a^b\big (\varphi _n(x)\overline {f_1(x)}-\psi _n(x) \overline {f_2(x)}\thinspace \big )\thinspace dx=0 $$

for all \(n\in \mathbb {N}\). Then

$$ \int _a^b\varphi _n(x)\overline {f_1(x)}\thinspace dx=0, \quad \int _a^b\psi _n(x)\overline {f_2(x)}\thinspace dx=0;$$

consequently, \( f_1(x)\equiv f_2(x)\equiv 0\). The proof of the lemma is complete.

It follows from [8] that the function systems \( \{\cos (\lambda _n x)\}\) and \(\{\sin (\lambda _n x)\} \) \((n\in \mathbb {N})\) are complete in \( L_2(0,\pi )\). Based on this, it follows from the definition of the numbers \(\lambda _n\) and Lemma 2 that the system of vectors

$$ Y_0(x,\lambda _n)= \begin {pmatrix} \cos (\lambda _n x)\\ \sin (\lambda _n x) \end {pmatrix} $$

(\(n\in \mathbb {Z}\)) is complete in \( L_{2,2}(0,\pi )\). Set

$$ F(x,t)=-\sum _{n=-\infty }^\infty \biggl (\frac {s_n}{\dot c(\lambda _n)}(Y_0(x,\lambda _n) Y_0^{\mathrm {T}}(t,\lambda _n))+\frac {1}{\pi }Y_0(x,n-1/2) Y_0^{\mathrm {T}}(t,n-1/2)\biggr ). $$
(20)

It follows from [4] that

$$ \|F(\thinspace \cdot \thinspace ,x)\|_{L_{2,2}^{2,2}(0,\pi )}+\|F(x,\cdot \thinspace )\|_{L_{2,2}^{2,2}(0,\pi )}<C,$$

where \(C \) is a constant independent of \(x \). Let us prove that for each \(x\in [0,\pi ] \) the homogeneous equation

$$ f^{\mathrm {T}}(t)+\int _0^xf^{\mathrm {T}}(s)F(s,t)\thinspace ds=0,$$
(21)

where \(f(t)=\mathrm {col}\thinspace (f_1(t),f_2(t))\), \(f\in L_{2,2}(0,x)\), \(f(t)=0 \) for \(x<t\le \pi \), has only the trivial solution. Multiplying Eq. (21) by \(\overline {f^{\mathrm {T}}(t)} \) and integrating the resulting equation over the segment \([0,x] \), we obtain

$$ \|f\|^2_{L_{2,2}(0,x)}+\int _0^x\left \langle \thinspace \int _0^xf^{\mathrm {T}}(s)F(s,t)\thinspace ds, \overline {f^{\mathrm {T}}(t)}\right \rangle \thinspace dt=0. $$

Taking into account definition (20), by simple calculations we find that

$$ \begin {aligned} &{}f^{\mathrm {T}}(s)F(s,t)\\ &\;{}=-\left \{\sum _{n=-\infty }^\infty \bigg \{z_n\big [f_1(s)\cos (\lambda _ns) \cos (\lambda _nt)+f_2(s)\sin (\lambda _ns)\cos (\lambda _nt),\right .\\ &\;\qquad \qquad \qquad {}f_1(s)\cos (\lambda _ns)\sin (\lambda _nt)+f_2(s)\sin (\lambda _ns)\sin (\lambda _nt)\big ]\\ &\;\qquad {}+\frac {1}{\pi }\Big [f_1(s)\cos \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big )+f_2(s)\sin \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big ),\\ &\;\qquad \qquad \qquad {}\left .f_1(s)\cos \big ((n-1/2)s\big )\sin \big ((n-1/2)t\big )+f_2(s)\sin \big ((n-1/2)s\big )\sin \big ((n-1/2)t\big )\Big ]\bigg \}\vphantom {\sum _{n=-\infty }^\infty }\right \}\\ &\;{}=-\left \{\sum _{n=-\infty }^\infty \bigg \{z_n\big [f_1(s)\cos (\lambda _ns)\cos (\lambda _nt)+f_2(s)\sin (\lambda _ns)\cos (\lambda _nt)\big ]\right .\\ &\;\qquad {}+\frac {1}{\pi }\Big [f_1(s)\cos \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big )+f_2(s)\sin \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big )\Big ],\\ &\;\qquad \qquad \qquad {}z_n\big [f_1(s)\cos (\lambda _ns)\sin (\lambda _nt)+f_2(s)\sin (\lambda _ns)\sin (\lambda _nt)\big ]\\ &\;\qquad {}+\left .\frac {1}{\pi } \Big [f_1(s)\cos \big (((n-1/2)s)\big )\sin \big ((n-1/2)t\big )f_2(s)\sin \big ((n-1/2)s\big )\sin \big ((n-1/2)t\big )\Big ]\bigg \}\vphantom {\sum _{n=-\infty }^\infty }\right \}, \end {aligned}$$

which implies that

$$ \begin {aligned} &\int _0^x\left \langle \int _0^x f^{\mathrm {T}}(s)F(s,t)\thinspace ds,\overline {f^{\mathrm {T}}(t)}\right \rangle \thinspace dt \\ &\quad {}=-\left \{\sum _{n=-\infty }^\infty \int _0^x\left (\int _0^x\bigg \{z_n\big [f_1(s)\cos (\lambda _ns)\cos (\lambda _nt)+f_2(s)\sin (\lambda _ns)\cos (\lambda _nt)\big ]\right .\right . \\[2ex] &\quad \quad \quad \quad \quad \quad {}+\frac {1}{\pi }\Big [f_1(s)\cos \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big ) \\ &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {}+\left .f_2(s)\sin \big ((n-1/2)s\big )\cos \big ((n-1/2)t\big )\Big ]\bigg \}\thinspace ds\vphantom {\int _0^x}\right )\overline {f_1(t)}\thinspace dt \\ &\quad \quad \quad \quad {}+\sum _{n=-\infty }^\infty \int _0^x\left (\int _0^x \bigg \{z_n\big [f_1(s)\cos (\lambda _ns)\sin (\lambda _nt)+f_2(s)\sin (\lambda _ns)\sin (\lambda _nt)\big ]\right . \\[2ex] &\quad \quad \quad \quad \quad \quad {}+\frac {1}{\pi }\Big [f_1(s)\cos \big ((n-1/2)s\big )\sin \big ((n-1/2)t\big ) \\ &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {}+\left .\left .f_2(s)\sin \big ((n-1/2)s\big )\sin \big ((n-1/2)t\big )\Big ]\bigg \}\thinspace ds\vphantom {\int _0^x}\right )\overline {f_2(t)}\thinspace dt\right \} \\ &\quad {}=-\left \{\sum _{n=-\infty }^\infty \left (\int _0^xz_n\big [f_1(s)\cos (\lambda _ns)+f_2(s)\sin (\lambda _ns)\big ]\thinspace ds \int _0^x\cos (\lambda _nt)\overline {f_1(t)}\thinspace dt\right .\right . \\[1ex] &\quad \quad \quad \quad \quad \quad {}+\left .\frac {1}{\pi }\int _0^x\Big [f_1(s)\cos \big ((n\!-\!1/2)s\big )+f_2(s)\sin \big ((n\!-\!1/2)s\big )\Big ]\thinspace ds\int _0^x\cos \big ((n\!-\!1/2)t\big )\overline {f_1(t)}\thinspace dt\right ) \\ &\quad \quad \quad \quad {}+\sum _{n=-\infty }^\infty \left (\int _0^x z_n\big [f_1(s)\cos (\lambda _ns)+f_2(s)\sin (\lambda _ns)\big ]\thinspace ds\int _0^x\sin (\lambda _nt)\overline {f_2(t)}\thinspace dt\right . \\[1ex] &\quad \quad \quad \quad \quad \quad {}+\left .\left .\frac {1}{\pi }\int _0^x\Big [f_1(s)\cos \big ((n\!-\!1/2)s\big )\!+\!f_2(s)\sin \big ((n\!-\!1/2)s\big )\Big ]\thinspace ds\!\int _0^x\sin \big ((n\!-\!1/2)t\big )\overline {f_2(t)}\thinspace dt\right )\!\right \} \\ &\quad {}=-\left \{\sum _{n=-\infty }^\infty \left (\int _0^x z_n\big [f_1(s)\cos (\lambda _ns)+f_2(s)\sin (\lambda _ns)\big ]\thinspace ds \int _0^x\cos (\lambda _nt)\overline {f_1(t)}\thinspace dt\right .\right . \\ &\quad \quad \quad \quad \quad \quad \quad \quad {}+\left .\int _0^x\big [f_1(s)\cos (\lambda _ns)+f_2(s)\sin (\lambda _ns)\big ]\thinspace ds\int _0^x\sin (\lambda _nt)\overline {f_2(t)}\thinspace dt\right ) \\[1ex] &\quad \quad \quad \quad {}+\frac {1}{\pi }\!\sum _{n=-\infty }^\infty \!\left (\int _0^x\Big [f_1(s)\cos \big ((n\!-\!1/2)s\big )\!+\!f_2(s)\sin \big ((n\!-\!1/2)s\big )\Big ]\thinspace ds\!\right )\!\int _0^x\cos \big ((n\!-\!1/2)t\big )\overline {f_1(t)}\thinspace dt \\ &\quad \quad \quad \quad {}+\left .\left .\int _0^x\Big [f_1(s)\cos \big ((n-1/2)s\big )+f_2(s)\sin \big ((n-1/2)s\big )\Big ]\thinspace ds\int _0^x\sin \big ((n-1/2)t\big )\overline {f_2(t)}\thinspace dt \right )\right \} \\ &\quad {}=-\left \{\sum _{n=-\infty }^\infty \left (\int _0^x z_n\big [f_1(t)\cos (\lambda _nt)+f_2(t)\sin (\lambda _nt)\big ]\thinspace dt\int _0^x\cos (\lambda _nt)\overline {f_1(t)}\thinspace dt\right .\right . \\ &\quad \quad \quad \quad \quad \quad \quad \quad {}+\left .\int _0^x\big [f_1(t)\cos (\lambda _nt)+f_2(t)\sin (\lambda _nt)\big ]\thinspace dt\int _0^x\sin (\lambda _nt)\overline {f_2(t)}\thinspace dt\right ) \\ &\quad \quad \quad \quad {}+\frac {1}{\pi }\sum _{n=-\infty }^\infty \left (\int _0^x\Big [f_1(t)\cos \big ((n\!-\!1/2)t\big )+f_2(t)\sin \big ((n\!-\!1/2)t\big )\Big ]\thinspace dt\int _0^x\cos \big ((n\!-\!1/2)t\big )\overline {f_1(t)}\thinspace dt\right . \\ &\quad \quad \quad \quad \quad \quad \quad \quad {}+\left .\left .\int _0^x\Big [f_1(t)\cos (nt)+f_2(t)\sin \big ((n-1/2)t\big )\Big ]\thinspace dt\int _0^x\sin \big ((n-1/2)t\big )\overline {f_2(t)}\thinspace dt \right )\right \} \\ &\quad {}=-\left \{\sum _{n=-\infty }^\infty z_n\int _0^x \big [f_1(t)\cos (\lambda _nt)+f_2(t)\sin (\lambda _nt)\big ]\thinspace dt\int _0^x\big [\overline {f_1(t)}\cos (\lambda _nt)+\overline {f_2(t)}\sin (\lambda _nt)\big ]\thinspace dt\right . \\ &\quad \quad \quad \quad \quad \quad \quad \quad {}+\sum _{n=-\infty }^\infty \frac {1}{\pi }\int _0^x\Big [f_1(t)\cos \big ((n-1/2)t\big )+ f_2(t)\sin \big ((n-1/2)t\big )\Big ]\thinspace dt \\ &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {}\times \left .\int _0^x\Big [\overline {f_1(t)}\cos \big ((n-1/2)t\big )+\overline {f_2(t)}\sin \big ((n-1/2)t\big )\Big ]\thinspace dt\right \} \\ &\quad {}=-\sum _{n=-\infty }^\infty z_n\left |\thinspace \int _0^x\big \langle f(t),Y_0(t,\lambda _n)\big \rangle \thinspace dt\thinspace \right |^2-\sum _{n=-\infty }^\infty \frac {1}{\pi }\left |\thinspace \int _0^x\big \langle f(t),Y_0(t,(n-1/2))\big \rangle \thinspace dt\thinspace \right |^2. \end {aligned} $$

In view of Parseval’s identity, we obtain

$$ \|f\|^2_{L_{2,2}(0,x)}=\sum _{n=-\infty }^\infty \frac {1}{\pi }\left |\thinspace \int _0^x\big \langle f(t),Y_0(t,(n-1/2))\big \rangle \thinspace dt\thinspace \right |^2; $$

therefore,

$$ \sum _{n=-\infty }^\infty z_n\left |\thinspace \int _0^x\big \langle f(t),Y_0(t,\lambda _n)\big \rangle \thinspace dt\thinspace \right |^2=0.$$
(22)

Since \(\mathrm {Re}\thinspace z_n<0 \) for each \(n \), Eq. (22) implies that \(\int \nolimits _0^x\langle f(t),Y_0(t,\lambda _n)\rangle \thinspace dt=0 \). The latter and the completeness of the system of vectors \( \{Y_0(t,\lambda _n)\}\) in \(L_{2,2}(0,\pi ) \) imply the identity \(f(t)\equiv 0 \). The unique solvability of Eq. (21) implies [4] that the functions \(c(\lambda ) \) and \(-s(\lambda ) \) are the entries of the first row of the monodromy matrix

$$ \tilde U(\pi ,\lambda )= \begin {pmatrix} \tilde c_1(\pi ,\lambda )&-\tilde s_2(\pi ,\lambda )\\ \tilde s_1(\pi ,\lambda )&\tilde c_2(\pi ,\lambda ) \end {pmatrix} $$

of problem (1), (2) with the matrix \(A \) defined in (10) and some potential \(\tilde V\in L_2(0,\pi ) \); i.e.,

$$ c(\lambda )=\tilde c_1(\pi ,\lambda ),\quad s(\lambda )=\tilde s_2(\pi ,\lambda ).$$
(23)

By virtue of (4), the characteristic determinant \(\tilde \Delta (\lambda )\) of this problem has the form

$$ \tilde \Delta (\lambda )=\tilde s_1(\pi ,\lambda )-\tilde s_2(\pi ,\lambda )=\tilde f(\lambda ), $$

where \(\tilde f\in PW_\pi \). Relations (3), (18), and (23) imply the equality

$$ \tilde \Delta (\lambda _n)=\tilde s_1(\pi ,\lambda _n)-\tilde s_2(\pi ,\lambda _n)= \frac {1}{\tilde s_2(\pi ,\lambda _n)}-\tilde s_2(\pi ,\lambda _n)=\frac {1}{s(\lambda _n)}-s(\lambda _n)=f(\lambda _n).$$

It follows from the last equality that the function

$$ \Phi (\lambda )=\frac {f(\lambda )-\tilde \Delta (\lambda )}{c(\lambda )}=\frac {f(\lambda )-\tilde f(\lambda )}{c(\lambda )} $$

is entire. Since

$$ \big |f(\lambda )-\tilde f(\lambda )\big |<c_1e^{\pi |\mathrm {Im}\thinspace \lambda |},\quad c_1=\mathrm {const}, $$
(24)

we conclude in view of inequality (13) that \(|\Phi (\lambda )|\le c_2=\mathrm {const} \) if \(|\mathrm {Im}\thinspace \lambda |\ge M\).

Let \(H\) stand for the union of vertical segments \( \{z:|\mathrm {Re}\thinspace z|=n,|\mathrm {Im}\thinspace z|\le M\} \), where \(|n|=N_0+1, N_0+2,\ldots \) Since the function \(c(\lambda ) \) is a sine-type function [9], we have \(|c(\lambda )|>\delta >0 \) for \(\lambda \in H \). The last inequality, the estimate (24), and the maximum principle imply the inequality \(|\Phi (\lambda )|<c_3=\mathrm {const}\) in the strip \(|\mathrm {Im}\thinspace \lambda |\le M\). Consequently, the function \(\Phi (\lambda )\) is bounded in the entire complex plane and is constant by Liouville’s theorem. Let \(|\mathrm {Im}\thinspace \lambda |=M \). Then, in view of relation (11), we have \(\lim \limits _{|\lambda |\to \infty }(f(\lambda )-\tilde f(\lambda ))=0\); therefore, \(\Phi (\lambda )\equiv 0 \), and hence \(f(\lambda )\equiv \tilde \Delta (\lambda )\). The proof of the theorem is complete.

Examples of functions in the class \(PW_\pi \) with roots of arbitrarily high multiplicity are known in the literature (see, e.g., [10, 11]). Note that the existence of one-dimensional boundary value problems with an unboundedly increasing multiplicity of eigenvalues was previously established for the Sturm–Liouville operator and an ordinary differential operator of any even order [10,11,12].