Skip to main content
Log in

Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems

  • Dynamical Systems
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

In nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory starting from a point of unstable manifold in a neighborhood of equilibrium reaches a state of oscillation, and therefore one can readily identify it. In contrast, for a hidden attractor, the basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors, it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. In this paper, we propose a new efficient analytical-numerical method for the study of hidden oscillations in multidimensional dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H., Elementary Quadratic Chaotic Flows with No Equilibria, Phys. Lett. A, 2013, vol. 377, pp. 699–702.

    Article  MathSciNet  Google Scholar 

  2. Molaie, M., Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H., Simple Chaotic Flows with One Stable Equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, vol. 23, no. 11, 1350188.

    Article  MathSciNet  Google Scholar 

  3. Wangand, X. and Chen, G., A Chaotic System with Only One Stable Equilibrium, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 3, pp. 1264–1272.

    Article  MathSciNet  Google Scholar 

  4. Wei, Z., Dynamical Behaviors of a Chaotic System with No Equilibria, Phys. Lett. A, 2011, vol. 376, pp. 102–108.

    Article  MATH  MathSciNet  Google Scholar 

  5. Wei, Z., Delayed Feedback on the 3-D Chaotic System Only with Two Stable Node-Foci, Comput. Math. Appl., 2011, vol. 63, pp. 728–738.

    Article  Google Scholar 

  6. Wang, X. and Chen, G., Constructing a Chaotic System with Any Number of Equilibria, Nonlinear Dynam., 2013, vol. 71, pp. 429–436.

    Article  MathSciNet  Google Scholar 

  7. Seng-Kin Lao, Shekofteh, Y., Jafari, S., and Sprott, J.C., Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, 1450010.

    Article  MathSciNet  Google Scholar 

  8. Leonov, G.A., Efficient Methods for the Search for Periodic Oscillations in Dynamical Systems, Prikl. Mat. Mekh., 2010, vol. 74, no. 1, pp. 37–49.

    MathSciNet  Google Scholar 

  9. Leonov, G.A., Vagaitsev, V.I., and Kuznetsov, N.V., Algorithm for Localizing Chua Attractors Based on the Harmonic Linearization Method, Dokl. Math., 2010, vol. 82, no. 1, pp. 663–666 (doi: 10.1134/S1064562410040411).

    Article  MATH  MathSciNet  Google Scholar 

  10. Leonov, G.A., Bragin, V.O., and Kuznetsov, N.V., Algorithm for Constructing Counterexamples to the Kalman Problem, Dokl. Math., 2010, vol. 82, no. 1, pp. 540–542 (doi: 10.1134/S1064562410040101).

    Article  MATH  Google Scholar 

  11. Leonov, G.A. and Kuznetsov, N.V., Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems, Dokl. Math., 2011, vol. 8, no. 1, pp. 475–481 (doi: 10.1134/S1064562411040120).

    Article  MathSciNet  Google Scholar 

  12. Leonov, G.A. and Kuznetsov, N.V., Analytical-Numerical Methods for Investigation of Hidden Oscillations in Nonlinear Control Systems, IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no. 1, pp. 2494–2505 (doi: 10.3182/20110828-6-IT-1002.03315).

    Google Scholar 

  13. Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden Oscillations in Nonlinear Control Systems, IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no. 1, pp. 2506–2510 (doi: 10.3182/20110828-6-IT-1002.03316).

    Google Scholar 

  14. Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., and Leonov, G.A., Algorithms for Finding Hidden Oscillations in Nonlinear Systems: the Aizerman and Kalman Problems and Chua’s Circuits, Izv. Ross. Akad. Nauk Teor. Sist. Upr., 2011, vol. 50, no. 4, pp. 3–36.

    MathSciNet  Google Scholar 

  15. Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Localization of Hidden Chua’s Attractors, Phys. Lett. A, 2011, vol. 375, pp. 2230–2233.

    Article  MATH  MathSciNet  Google Scholar 

  16. Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., and Vagaitsev, V.I., Hidden Oscillations in Dynamical Systems, Trans. Syst. Contr., 2011, vol. 6, pp. 54–67.

    Google Scholar 

  17. Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Hidden Attractor in Smooth Chua Systems, Phys. D: Nonlinear Phenomena, 2012, vol. 241, no. 18, pp. 1482–1486 (doi: 10.1016/j.physd.2012.05.016).

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., and Vagaitsev, V.I., Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit, Lecture Notes in Electrical Engineering, 2013, vol. 174, pp.149–158.

    Article  Google Scholar 

  19. Leonov, G.A. and Kuznetsov, N.V., Hidden Attractors in Dynamical Systems: From Hidden Oscillation in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, vol. 23, 1330002.

    Article  MathSciNet  Google Scholar 

  20. Leonov, G.A. and Kuznetsov, N.V., Analytical-Numerical Methods for Hidden Attractors Localization: The 16th Hilbert Problem, Aizerman, and Kalman Conjectures, and Chua Circuit, Numer. Methods Differential Equations, Optimization, and Technological Problems, Computational Methods in Applied Sciences, Springer, 2013, vol. 27,part 1, pp. 41–64.

    Article  MathSciNet  Google Scholar 

  21. Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Pogromsky, A.Yu., Hidden Oscillations in Aircraft Flight Control System with Input Saturation, IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 5, no. 1, pp. 75–79 (doi: 10.3182/20130703-3-FR-4039.00026).

    Google Scholar 

  22. Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden Oscillations in Stabilization System of Flexible Launcher with Saturating Actuators, IFAC Proceedings Volumes (IFACPapersOnline), 2013, vol. 19, no. 1, pp. 37–41 (doi: 10.3182/20130902-5-DE-2040.00040).

    Google Scholar 

  23. Chua, L.O., A Zoo of Strange Attractors from the Canonical Chua’s Circuits, Proc. of the IEEE 35th Midwest Symp. on Circuits and Systems) (Cat. No. 92CH3099-9), Washington, 1992, vol. 2, pp. 916–926.

    Article  Google Scholar 

  24. Lorenz, E.N., Deterministic Nonperiodic Flow, J. Atmospheric Sci., 1963, vol. 20, pp. 65–75.

    Google Scholar 

  25. Rössler, O.E., An Equation for Continuous Chaos, Phys. Lett., 1976, vol. 57, A. 5, pp. 397–398.

    Article  Google Scholar 

  26. Burkin, I.M., The Buffer Phenomenon in Multidimensional Dynamical Systems, Differ. Uravn., 2002, vol. 38, no. 5, pp. 585–595.

    MathSciNet  Google Scholar 

  27. Burkin, I.M. and Burkina, L.I., Frequency Criterion for the Existence of Cycles in Multiconnected Automatic Regulation Systems, Vestn. Tulsk. Gos. Univ. Differ. Uravn. Prikl. Zadachi, Tula: Tulsk. Gos. Univ., 2010, vol. 1, pp. 3–14.

    Google Scholar 

  28. Burkin, I.M. and Soboleva, D.V., On the Structure of a Global Attractor of Multiconnected Automatic Regulation Systems, Izv. Tulsk. Gos. Univ. Estestv. Nauki, Tula: Tulsk. Gos. Univ., 2012, vol. 1, pp. 5–16.

    Google Scholar 

  29. Burkin, I.M. and Burkina, L.I., Oscillations with Rigid Excitation in Multiconnected Regulated Systems, Vestn. Tulsk. Gos. Univ. Differ. Uravn. Prikl. Zadachi, Tula: Tulsk. Gos. Univ., 2012, vol. 1, pp. 3–13.

    Google Scholar 

  30. Savaci, F.A. and Gunel, S., Harmonic Balance Analysis of the Generalized Chua’s Circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, vol. 16, no. 8, pp. 2325–2332.

    Article  MATH  MathSciNet  Google Scholar 

  31. Kalman, R.E., Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems, Trans. ASME, 1957, vol. 79.3, pp. 553–566.

    MathSciNet  Google Scholar 

  32. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (The Stability of Nonlinear Systems with a Nonunique Equilibrium State), Moscow: Nauka, 1978.

    Google Scholar 

  33. Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I., Frequency Methods in Oscillation Theory, Kluwer Academic Publishers, 1996.

    Book  MATH  Google Scholar 

  34. Kholodniok, M., Klich, A., Kubichek, M., and Marek, M., Metody analiza nelineinykh dinamicheskikh modelei (Analysis Methods for Nonlinear Dynamical Models), Moscow: Mir, 1991.

    Google Scholar 

  35. Aizerman, M.A., On a Problem Concerning the Stability “in the Large” of Dynamical Systems, Uspekhi Mat. Nauk, 1949, vol. 4, pp. 186–188.

    MathSciNet  Google Scholar 

  36. Krasovskii, N.N., Theorems on the Stability of Motions Governed by a System of Two Equations, Prikl. Mat. Mekh., 1952, vol. 16, no. 5, pp. 547–554.

    MathSciNet  Google Scholar 

  37. Pliss, V.A., Nelokal’nye problemy teorii kolebanii (Nonlocal Problems in the Theory of Oscillations), Moscow: Nauka, 1964.

    Google Scholar 

  38. Leonov, G.A., On the Stability in the Large of Nonlinear Systems in the Critical Case of Two Roots, Prikl. Mat. Mekh., 1981, vol. 45, no. 4, pp. 752–755.

    Google Scholar 

  39. Leonov, G.A., Ponomarenco, D.V., and Smirnova, V.B., Frequancy Methods for Nonlinear Analysis. Theory and Applications, Singapure: World Scientific, 1996.

    Google Scholar 

  40. Barabanov, N.E., On a Kalman Problem, Sibirsk. Mat. Zh., 1988, vol. 29, no. 3, pp. 3–11.

    MathSciNet  Google Scholar 

  41. Leonov, G.A., Andrievskii, B.R., Kuznetsov, N.V., and Pogromskii, A.Yu., Aircraft Control with Anti-Windup Compensation, Differ. Equ., 2012. vol. 48, no. 13, pp. 1700–1720.

    Article  MATH  MathSciNet  Google Scholar 

  42. Hahs, D. and Sorrells, J., Dynamic Vehicle Control (Problem), Proc. Amer. Control Conf. (ACC 1991), Boston, USA, 1991, pp. 2967–2968, AACC.

    Google Scholar 

  43. Neimark, Yu.I. and Landa, P.S., Stokhasticheskie i khaoticheskie kolebaniya (Stochastic and Chaotic Oscillations), Moscow: Nauka, 1987.

    Google Scholar 

  44. Leonov, G.A. and Boichenko, V.A., Lyapunov’s Direct Method in the Estimation of the Hausdorf Dimension of Attractors, Acta Appl. Math., 1992, vol. 26, pp. 1–60.

    Article  MATH  MathSciNet  Google Scholar 

  45. Leonov, G.A., Upper Estimates for the Hausdorff Dimension of Attractors, Vestnik St. Petersburg Univ. Ser. 1, 1998, vol. 1, pp. 19–22.

    Google Scholar 

  46. Magnitskii, N.A. and Sidorov, S.V., Novye metody khaoticheskoi dinamiki (New Methods of Chaotic Dynamics), Moscow, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Burkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkin, I.M., Khien, N.N. Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems. Diff Equat 50, 1695–1717 (2014). https://doi.org/10.1134/S0012266114130023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266114130023

Keywords

Navigation