Skip to main content
Log in

Development of the Total Westward Auroral Electrojet Current Estimates during Intense Substorms

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

We further develop a simple Strip model of a westward substorm electrojet, based on magnetic field observations along a sparse meridian chain of observing stations. The model has three parameters—the boundaries and the (uniform) electric current density. We illustrate it’s performance on CARISMA substorm examples. Introduction of an additional model parameter, describing a deviation from the rectangular to the bell-shape of the current meridional profile proved to be not very productive. Finally we compare these model estimates of the total electrojet strength with the estimates of substorm current wedge, determined using the mid-latitude stations. Both estimates have similar magnitude and change in concert during development of substorm expansion phase. The differences in magnitude at specific time instants may reach factor of two, but are similar to the differences between competing ionospheric electrojet models. The latter suggests, that the actual geometry of electrojet current and current wedge current may differ substantially from the simplest models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Amm, O. and Viljanen, A., Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planets Space, 1999, vol. 51, pp. 431–440.

    Article  ADS  Google Scholar 

  2. Chapman, S. and Bartels, J., Geomagnetism, Oxford: Oxford Univ. Press, 1940.

    Google Scholar 

  3. Gjerloev, J.W., A global ground-based magnetometer initiative, EOS Trans., 2009, vol. 90, no. 27, pp. 230–231.

    Article  ADS  Google Scholar 

  4. Johnsen, M.G., Real-time determination and monitoring of the auroral electrojet boundaries, J. Space Weather Space Clim., 2013, vol. 3, p. A28.

    Article  ADS  Google Scholar 

  5. Evdokimova, M.A. and Petrukovich, A.A., Estimation of westward auroral electrojet current with magnetometer chain data, Ann. Geophys., 2020, vol. 38, no. 1, pp. 109–121.

    Article  ADS  Google Scholar 

  6. Hazewinkel, M., Encyclopaedia of Mathematics, Berlin: Springer Science and Business Media, 1997, vol. suppl. 1, p. 119.

  7. Horning, B. R., et al., Application of linear inverse theory to a line current model of substorm current systems, J. Geophys. Res., 1974, vol. 79, no. 34, pp. 5202–5210.

    Article  ADS  Google Scholar 

  8. Ganushkina, N.Yu., Liemohn, M.W., and Dubyagin, S., Current systems in the Earth’s magnetosphere, Rev. Geophys., 2018, vol. 56, 309–332.

    Article  ADS  Google Scholar 

  9. Kotikov, A.L., Latov, Yu.O., and Troshichev, O.A., Structure of auroral electrojets by the data from a meridional chain of magnetic stations, Geophysica, 1987, vol. 23, pp. 143–154.

    Google Scholar 

  10. Mann, I.R., et al., The upgraded CARISMA magnetometer array in the THEMIS era, Space Sci. Rev., 2008, vol. 141, p. 413.

    Article  ADS  Google Scholar 

  11. McPherron, R.L., et al., Substorms in space: The correlation between ground and satellite observations of the magnetic field, Radio Sci., 1973, vol. 7, no. 11, pp. 1059–1076.

    Article  ADS  Google Scholar 

  12. Mersmann, U., Baumjohann, W., Küppers, F., and Lange, K., Analysis of an eastward electrojet by means of upward continuation of ground-based magnetometer data, J. Geophys., 1979, vol. 45, p. 281.

    Google Scholar 

  13. Mishin, V.M., The magnetogram inversion technique and some applications, Space Sci. Rev., 1990, vol. 53, pp. 83–163.

    Article  ADS  Google Scholar 

  14. Newell, P.T., Sotirelis, T., and Wing, S., Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res., 2009, vol. 114, p. A09207. https://doi.org/10.1029/2009JA014326

    Article  ADS  Google Scholar 

  15. Newell, P. and Gjerloev, J., Evaluation of SuperMAG auroral indices as indicators of substorms and auroral power, J. Geophys. Res., 2011, vol. 116, p. A12211. https://doi.org/10.1029/2011JA016779

    Article  ADS  Google Scholar 

  16. Petrov, V.G., Modeling of induction in the conducting Earth in the study of the dynamics of polar electrojets, Geomagn. Aeron., 1982, vol. 22, pp. 159–161.

    ADS  Google Scholar 

  17. Popov, V.A., Papitashvili, V.O., and Watermann, J.F., Modeling of equivalent ionospheric currents from meridian magnetometer chain data, Earth Planets Space, 2001, vol. 53, pp. 129–137.

    Article  ADS  Google Scholar 

  18. Sergeev, V.A., et al., Comparison of UV optical signatures with the substorm current wedge as predicted by an inversion algorithm, J. Geophys. Res.: Space Phys., 1996, vol. 101, no. A2, pp. 2615–2627.

    Article  ADS  Google Scholar 

  19. Starkov, G.V., Mathematical model of the auroral boundaries, Geomagn. Aeron., 1994, vol. 34, no. 3, pp. 80–86.

    Google Scholar 

  20. Untiedt, J. and Baumjohann, B., Studies of polar current systems using the IMS Scandinavian magnetometer array, Space Sci. Rev., 1993, vol. 63, pp. 245–390.

    Article  ADS  Google Scholar 

  21. Viljanen, A. and Hakkinen, L., IMAGE magnetometer network, in Satellite-Ground Based Coordination Sourcebook, Lockwood, M., Wild, M.N., and Opgenoorth, H.J., Eds., Paris: Eur. Space Agency, 1997, pp. 111–117.

    Google Scholar 

  22. Vorobjev, V.G., Yagodkina, O.I., and Katkalov, Y., Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 157–171.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data analysis was funded with Russian Science Fund project 18-47-05001. We are thankful for IMAGE data archive.

Author information

Authors and Affiliations

Authors

Contributions

MAE performed the data processing. AAP is responsible for data analysis and interpretation.

Corresponding author

Correspondence to M. A. Evdokimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrukovich, A.A., Evdokimova, M.A. & Apatenkov, S.V. Development of the Total Westward Auroral Electrojet Current Estimates during Intense Substorms. Cosmic Res 60, 397–405 (2022). https://doi.org/10.1134/S0010952522060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522060090

Navigation