Skip to main content
Log in

Correlated Disturbances of the Upper and Lower Ionosphere from Synchronous Measurements of Parameters of GNSS Signals and VLF Radio Signals

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This is a study of the spatiotemporal distribution of midlatitude disturbances of the upper and lower ionosphere in the European zone during a strong geomagnetic storm and strong X-ray flare using data of synchronous measurements of the parameters of global navigation satellite system (GNSS) signals and very low-frequency (VLF) radio signals. It has been shown that the contribution of electron concentration at different altitudes to the total electron content of the ionosphere can vary significantly depending on the type of heliogeophysical disturbances. A combined analysis of GNSS signals and VLF radio signals makes it possible to study the mechanisms of coupling between the upper and lower ionospheric disturbances and the dynamics of ionospheric disturbances in the horizontal and vertical directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., Boitman, O.N., Zhovty, E.I., et al., Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data, Radio Sci., 1999, vol. 34, no. 2, pp. 477– 487. https://doi.org/10.1029/1998RS900004

    Article  ADS  Google Scholar 

  2. Gavrilov, B.G., Zetser, Yu.I., Ryakhovskii, I.A., Poklad, Yu.V., and Ermak,V.M., Remote sensing of ELF/VLF radiation induced in experiments on artificial modification of the ionosphere, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 5, no. 4, pp 450–456. https://doi.org/10.7868/S0016794015040045

  3. Han, F., Cummer, S.A., Li, J., and Lu, G., Daytime ionospheric D region sharpness derived from VLF radio atmospherics, J. Geophys. Res., 2011, vol. 116, no. 5. https://doi.org/10.1029/2010JA016299

  4. Maurya, A.K., Veenadhari, B., Singh, R., et al., Nighttime D region electron density measurements from ELF–VLF tweek radio atmospherics recorded at low latitudes, J. Geophys. Res., 2012, vol. 117, no. A11. https://doi.org/10.1029/202JA017876

  5. Gavrilov, B.G., Zetser, Yu.I., Lyakhov, A.N., Poklad, Yu.V., and Ryakhovskii, I.A., Spatiotemporal distributions of the electron density in the ionosphere by records of the total electron content and phase of VLF radio signals, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 4, pp. 461–470. https://doi.org/10.7868/S001679401704006X

  6. Astafyeva, E., Zakharenkova, I.M., and Förste, M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 10, pp. 9023–9037. https://doi.org/10.1002/2015JA021629

    Article  ADS  Google Scholar 

  7. Borries, C., Mahrous, A.M., Ellahouny, N.M., and Badeke, R., Multiple ionospheric perturbations during the Saint Patrick’s Day storm 2015 in the European–African sector, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 11, pp. 11333–11345. https://doi.org/10.1002/2016JA023178

    Article  ADS  Google Scholar 

  8. Fang, X., Lummerzheim, D., and Jackman, C.H., Proton impact ionization and a fast calculation method, J. Geophys. Res., 2013, vol. 118, no. 8, pp. 5369–5378. https://doi.org/10.1002/jgra.50484

    Article  Google Scholar 

  9. Smirnova, N.V., Lyakhov, A.N., Zetser, Yu.I., Osepian, A.P., Meng, C.-I., Smith R., and Stenbaek-Nilsen, H.C., Precipitating protons and their role in ionization of the polar ionosphere, Cosmic Res., 2004, vol. 42, no. 3, pp. 210–218.

    Article  ADS  Google Scholar 

  10. Wait, J.R. and Spies, K.P., Characteristics of the Earth–ionosphere waveguide for VLF radio waves, NBS Technical Note no. 300, 1964.

  11. Kumar, A. and Kumar, S., Solar flare effects on D‑region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24, Earth Planets Space, 2018, vol. 70, no. 1, id 70. https://doi.org/10.1186/s40623-018-0794-8

Download references

ACKNOWLEDGMENTS

This study was conducted within State research targets AAAA-A17-117112350014-8 and 0146-2015-0017.

The authors are sincerely grateful to Madrigal (http://www.openmadrigal.org/), UK Solar Data Centre (https://www.ukssdc.ac.uk/cgi-bin/digisondes/ cost_database.pl), and Kiel Longwave Monitor (http://www.lf-radio.de/) for providing us with geophysical data and to Johns Hopkins University Applied Physics Laboratory for providing us with DMSP satellite data (http://ssusi.jhuapl.edu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Gavrilov.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, B.G., Zetser, Y.I., Lyakhov, A.N. et al. Correlated Disturbances of the Upper and Lower Ionosphere from Synchronous Measurements of Parameters of GNSS Signals and VLF Radio Signals. Cosmic Res 57, 36–43 (2019). https://doi.org/10.1134/S0010952519010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952519010039

Navigation