Skip to main content
Log in

Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knudsen, W.C., Magnetospheric convection and the high-latitude F2 ionosphere, J. Geophys. Res., 1974, vol. 79, p. 1046–1055.

    Article  ADS  Google Scholar 

  2. Lukianova, R., Uvarov, V.M., and Coisson, P., Evolution of the high-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions, Adv. Space Res., 2017, vol. 59, no. 2, pp. 557–570. doi 10.1016/j.asr.2016.10.010

    Article  ADS  Google Scholar 

  3. Huang, X., Reinisch, B.W., Bilitza, D., and Benson, R.F., Electron density profiles of the topside ionosphere, Ann. Geophys., 2002, vol. 45, no. 1, pp. 125–130.

    Google Scholar 

  4. Afonin, V.V., Deminov, M.G., and Karpachev, A.T., Longitudinal variations in the position of the main ionospheric dip for nighttime winter conditions according to Kosmos-900 and Interkosmos-19 satellite data, Geomagn. Aeron., 1992, vol. 32, no. 2, pp. 75–78.

    ADS  Google Scholar 

  5. Deminov, M.G., Karpachev, A.T., and Morozova, L.P., The subauroral ionosphere during SUNDIAL, June 1987, according to Kosmos 1809 satellite data, Geomagn. Aeron., 1992, vol. 32, no. 1, pp. 54–58.

    Google Scholar 

  6. Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R., Swarm—An Earth observation mission investigating geospace, Adv. Space Res., 2008, vol. 41, no. 1, pp. 210–216.

    Article  ADS  Google Scholar 

  7. Buchert, S., Zangerl, F., Sust, M., et al., SWARM observations of equatorial electron densities and topside GPS track losses, Geophys. Res. Lett., 2015, vol. 42, no. 7, pp. 2088–2092. doi 10.1002/2015GL063121

    Article  ADS  Google Scholar 

  8. Pignalberi, A., Pezzopane, M., Tozzi, R., et al., Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period, Earth Planets Space, 2016, vol. 68, no. 93. doi 10. 1186/s40623-016-0466-5

    Google Scholar 

  9. Zakharenkova, I., Astafyeva, E., and Cherniak, I., GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere, Earth Planets Space, 2016, vol. 68, no. 120. doi 10.1186/s40623- 016-0490-5

    Google Scholar 

  10. Knudsen, D., Burchill, J.K., Berg, K., et al., A lowenergy charged particle distribution imager with a compact sensor for space applications, Rev. Sci. Instrum., 2003, vol. 74, pp. 202–211.

    Article  ADS  Google Scholar 

  11. Chisham, G., Lester, M., Milan, S.E., et al., A decade of the super dual auroral radar network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 2007, vol. 28, pp. 33–109.

    Article  ADS  Google Scholar 

  12. Shepherd, S.G. and Ruohoniemi, J.M., Electrostatic potential patterns in the high-latitude ionosphere constrained by SuperDARN measurements, J. Geophys. Res., 2000, vol. 105, no. A10, pp. 23005–23014.

    Article  ADS  Google Scholar 

  13. Sato, T., Morphology of ionospheric F2 disturbances in the polar regions, Rep. Ionos. Space Res. Jpn., 1959, vol. 13, pp. 91–104.

    Google Scholar 

  14. Foster, J.C., et al., Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 2005, 110. doi 10.1029/2004JA010928

  15. Spicher, A., Cameron, T., Grono, E.M., et al., Observation of polar cap patches and calculation of gradient drift instability growth times: A swarm case study, Geophys. Res. Lett., 2015, vol. 42, pp. 201–206. doi 10.1002/2014GL062590

    Article  ADS  Google Scholar 

  16. Spicher, A., Clausen, L.B.N., Miloch, W.J., et al., Interhemispheric study of polar cap patch occurrence based on Swarm in situ data, J. Geophys. Res., 2017, vol. 122, no. 3, pp. 3837–3851. doi 10.1002/2016JA023750

    Google Scholar 

  17. Cherniak, I. and Zakharenkova, I., High-latitude ionospheric irregularities: Differences between groundand space-based GPS measurements during the 2015 St. Patrick’s Day storm, Earth Planets Space, 2016, vol. 68, р. 136. doi 10.1186/s40623-016-0506-1

    Article  ADS  Google Scholar 

  18. Horvath, I. and Lovell, B.C., Polar tongue of ionization (TOI) and associated Joule heating intensification investigated during the magnetically disturbed period of 1–2 October 2001, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 5897–5913. doi 10.1002/2015JA022283

    Article  ADS  Google Scholar 

  19. Hosokawa, K., Tsugawa, T., Shiokawa, K., et al., Unusually elongated, bright airglow plume in the polar cap F region: Is it tongue of ionization?, Geophys. Res. Lett., 2009, vol. 36, no. 7. doi 10.1029/2009GL037512

    Google Scholar 

  20. Uvarov, V.M. and Lukianova, R.Yu., Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions, Adv. Space Res., 2015, vol. 56, pp. 2563–2574. doi 10.1016/j.asr.2015.10.004

    Article  ADS  Google Scholar 

  21. Atkinson, G. and Hatchinson, D., Effect of day–night ionospheric conductivity on polar cap convective flow, J. Geophys. Res., 1978, vol. 83, pp. 725–731.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Lukianova.

Additional information

Original Russian Text © R.Yu. Lukianova, Sh.R. Bogoutdinov, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 6, pp. 448–455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukianova, R.Y., Bogoutdinov, S.R. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites. Cosmic Res 55, 436–445 (2017). https://doi.org/10.1134/S0010952517060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517060077

Navigation