Skip to main content
Log in

Remnant magnetic fields of Mars and their interaction with the solar wind

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This work presents a review of studies of the Martian magnetic fields during the early Soviet missions to Mars in 1971–1974, which never approached Mars by closer than 1000 km before the experiment with the Magnetometer/Electronic Reflectometer (MAG/ER) on board the Mars Global Surveyor spacecraft, which could descend to altitudes of 80–100 km. At present, the experiment with the magnetometer (MAG) onboard the American MAVEN spacecraft adds new data, but the map of distribution of remnant magnetic fields of Mars and the picture of their interaction with the solar wind are already formed and, at its core, obviously, will not be revised. Thus, it would be very instructive to consider the following in detail: (a) what is already known regarding the features and distribution of remnant magnetic fields on Mars; (b) how they control the interaction of solar wind with a weakly magnetized planet (Mars); and (c) what is its distinction from another nonmagnetized planet (Venus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connerney, J.E.P., Espley, J., Lawton, P., et al., The MAVEN magnetic field investigation, Space Sci. Rev., 2015, vol. 195, no. 1, pp. 257–291. doi 10.1007/s11214- 015-0169-4

    Article  ADS  Google Scholar 

  2. Dolginov, Sh., Yeroshenko, Ye.G., and Zhuzgov, D.N, Magnetic field of Mars according to data Mars-3 and Mars-5 satellites, J. Geophys. Res., 1976, vol. 81, pp. 3353–3362.

    Article  ADS  Google Scholar 

  3. Dolginov, Sh.Sh., Yeroshenko, Ye.G., Zhuzgov, L.N., et al., Magnetic field and plasma inside and outside of the Martian magnetosphere, in Solar Wind Interaction with the Planets Mercury, Venus and Mars (NASA, Washington, D.C., 1976), pp. 1–20.

    Google Scholar 

  4. Gringauz, K.I, Interaction of solar wind with Mars as seen by charged particle traps on Mars 2, 3 and 5 satellites, Rev. Geophys. Space Phys., 1976, vol. 14, no. 3, pp. 391–402.

    Article  Google Scholar 

  5. Breus, T.K. and Verigin, M.I, Study of solar plasma near Mars and on the Earth–Mars route using charged particle catchers on Soviet space vehicles in 1971–1973, Kosm. Issled., 1976, vol. 14, no. 3, pp. 400–405.

    ADS  Google Scholar 

  6. Bogdanov, A.V. and Vaisberg, O.L, Structure and variations of the solar wind–Mars interaction region, J. Geophys. Res., 1975, vol. 80, pp. 487–494.

    Article  ADS  Google Scholar 

  7. Dolginov, Sh.Sh., On the magnetic field of Mars: Mars 2 and 3 evidence, Geophys. Res. Lett., 1978, vol. 5, no. 1, pp. 89–92.

    Article  ADS  Google Scholar 

  8. Sibeck, D.G., Lopez, R.E., and Roelof, E.C, Solar wind control of the magnetopause shape, location and motion, J. Geophys. Res., 1991, vol. 96, pp. 5489–5495.

    Article  ADS  Google Scholar 

  9. Russell, C.T. and Vaisberg, O., The interaction of the solar wind with Venus, in Venus, Hunten, D.M., Ed., Tucson: Univ. of Arizona, 1983, pp. 873–940.

    Google Scholar 

  10. Krymskii, A.M., An interpretation of the large-scale ionospheric magnetic fields and the altitude distribution of the ionospheric plasma on the dayside of the Venus and Mars, in Venus and Mars: Atmosphere, Ionospheres and Solar Wind Interactions, Luhmann, J.G., Tatrallyay, T., and Pepin, R.O., Eds., Washington, D.C.: AGU, 1992.

    Google Scholar 

  11. Hanson, W.B. and Mantas, G.P, Viking electron temperature measurements–evidence for a magnetic field in the Martian ionosphere, J. Geophys. Res., 1988, vol. 93, no. 1, pp. 7538–7544.

    Article  ADS  Google Scholar 

  12. Breus, T.K., Bauer, S.J., Krymskii, A.M., and Mitnitskii, V.Ya., Mass-loading in the solar wind interaction with Venus and Mars, J. Geophys. Res., 1989, vol. 94, pp. 2375–2382.

    Article  ADS  Google Scholar 

  13. Brecht, S.H. and Ferrante, J.R, Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars, J. Geophys. Res., 1991, vol. 96, pp. 11209–11220.

    Article  ADS  Google Scholar 

  14. Krymskii, A.M., Breus, T.K., Ness, N.F., and Acuna, M.H, The IMF pile-up regions near the Earth and Venus: Lessons for the solar wind–Mars interaction, Space Sci. Rev., 2000, vol. 92, pp. 535–564.

    Article  ADS  Google Scholar 

  15. Rosenbauer, H., Shutte, N., Apathy, I., et al., Ions of Martian origin and plasma sheet in the Martian magnetosphere: Initial results of the TAUS experiment, Nature, 1989, vol. 341, pp. 612–614.

    Article  ADS  Google Scholar 

  16. Lundin, R., Zakharov, A., and Pellinen, R, First measurements of the ionospheric plasma escape from Mars, Nature, 1989, vol. 341, pp. 609–612.

    Article  ADS  Google Scholar 

  17. Verigin, M.I., Gringauz, K.I., Kotova, G.A., et al., The dependence of the Martian magnetosphere and bow shock on solar wind ram pressure according the Phobos-2 TAUS ion spectrometer measurements, J. Geophys. Res., 1993, vol. 98, pp. 1303–1309.

    Article  ADS  Google Scholar 

  18. Verigin, M., Kotova, G., Shutte, N., et al., Quantitative model of the Martian magnetopause shape and its variation with the solar wind Ram pressure based on Phobos-2 observations, J. Geophys. Res., 1997, vol. 102, no. 2, pp. 2147–2155.

    Article  ADS  Google Scholar 

  19. Trotignon, J.G., Grard, R., Barabash, S., et al., Solar wind measurements near Mars and their implication in the red planet environment, Planet. Space Sci., 1996, vol. 44, no. 2, pp. 117–127.

    Article  ADS  Google Scholar 

  20. Grard, R., Skalsky, S., and Trotignon, J.G., Selected wave and plasma features of the Martian environment, in Plasma Environments of Non-Magnetic Planets, (COSPAR Colloquia Ser. 4), New York: Pergamon, 1993, p. 321.

    Google Scholar 

  21. Breus, T.K., Dubinin, E.M., Krymskii, A.M., et al., The solar wind interaction with Mars: Consideration of Phobos 2 mission observations of an ion composition boundary on the dayside, J. Geophys. Res., 1991, vol. 96, pp. 11165–11174.

    Article  ADS  Google Scholar 

  22. Acuna, M.H., Connerney, J.E.P., Wasilewski, P., et al., Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 1998, vol. 279, pp. 1676–1680.

    Article  ADS  Google Scholar 

  23. Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., et al., The global magnetic field of Mars and implications for crustal evolution, Geophys. Res. Lett., 2001, vol. 28, pp. 4015–4018.

    Article  ADS  Google Scholar 

  24. Vignes, D., Mazelle, C., Rueme, H., et al., The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor, Geophys. Res. Lett., 2000, vol. 27, no. 1, pp. 49–52.

    Article  ADS  Google Scholar 

  25. Cloutier, P.A., Law, C.C., Crider, D.H., et al., Venuslike interaction of the solar wind with Mars, Geophys. Res. Lett., 1999, vol. 26, no. 17, pp. 2685–2688.

    Article  ADS  Google Scholar 

  26. Crider, D.H., Cloutier, P., Law, C., et al., Evidence of electron impact ionization in the magnetic pileup boundary of Mars, Geophys. Res. Lett., 2000, vol. 27, no. 1, pp. 45–48.

    Article  ADS  Google Scholar 

  27. Crider, D.H, Acuña, M.H., Connerney, J.E.P., et al., Observations of the latitude dependence of the location of the Martian magnetic pileup boundary, Geophys. Res. Lett., 2002, vol. 29, no. 8, pp. 11–1–11-4.

    Article  Google Scholar 

  28. Nagy, A.F., Winterholter, D., Sauer, K., et al., The plasma environment of Mars, Space Sci. Rev., vol. 111, nos. 1–2, pp. 33–114. doi 10.1023/ B:SPAC.0000032718.47512.92

  29. Breus, T.K, Venus: Review of present understanding of solar wind interaction, Space Sci. Rev., 1979, vol. 23, pp. 253–275.

    Article  ADS  Google Scholar 

  30. Verigin, M.I., Gringauz K.I., Rishter A.K. et al., Plasma properties from the upstream region to the cometopause of comet Halley: Vega observations, Astron. Astrophys, 1987, vol. 187, pp. 121–124.

    ADS  Google Scholar 

  31. Langlais, B., Purucker, M.E., and Mandea, M., Crustal magnetic field of Mars, J. Geophys. Res., 2004, vol. 109, E02008. doi 10.1029/2003JE002048

    Article  ADS  Google Scholar 

  32. Schmitz, D.R., Meyer, J., and Cain, J.C, Modelling the Earth’s geomagnetic field to high degree and order, Geophys. J., 1989, vol. 97, pp. 421–430.

    Article  ADS  Google Scholar 

  33. Arkani-Hamed, J., A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 2001, vol. 106, pp. 23197–23208.

    Article  ADS  Google Scholar 

  34. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective, New York: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  35. Purucker, M., Ravat, D., Frey, H., et al., An altitude normalized magnetic map of Mars and its interpretation, Geophys. Res. Lett., 2000, vol. 27, pp. 2449–2452.

    Article  ADS  Google Scholar 

  36. Acuña, M.H., Connerney, J.E.P., Wasilewski, P., et al., Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits, J. Geophys. Res., 2001, vol. 106, pp. 23403–23417.

    Article  ADS  Google Scholar 

  37. Krymskii, A.M., Breus, T.K., Ness, N.F., et al., Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J. Geophys. Res., 2002, vol. 107, no. A9, pp. SIA 2-1–SIA 2-10.

  38. Cain, J.C., Ferguson, B.B., and Mozzoni, D, An n = 90 internal potential function of the Martian crustal magnetic field, J. Geophys. Res., 2003, vol. 108, no. E2. doi 10.1029/2000JE001487

  39. Lin, R.P., Mitchell, D.L., Curtis, D.W., et al., Lunar surface magnetic fields and their interaction with the solar wind: Results from lunar prospector, Science, 1998, vol. 281, pp. 1480–1484.

    Article  ADS  Google Scholar 

  40. Spreiter, J.R. and Stahara, S.S., Computer modeling of the solar wind interaction with Venus and Mars, in Venus and Mars: Atmosphere, Ionospheres, and Solar Wind Interactions, Luhmann, J.G., Tatrallyay, M., Pepin, R.O., Eds., Washington, D.C.: AGU, 1992, pp. 345–383.

    Google Scholar 

  41. Brain, D.A., Bagenal, F., Acuña, M.H., and Connerney, J.E.P, Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 2003, vol. 108, no. A12, 1424. doi 10.1029/ 2002JA009482

    Article  Google Scholar 

  42. Bertaux, J.-L., Leblanc, F., Perrier, S., et al., Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 2005, vol. 307, pp. 566–569.

    Article  ADS  Google Scholar 

  43. Lundin, R., Winningham, D., Barabash, S., et al., Plasma acceleration above Martian magnetic anomalies, Science, 2006, vol. 311, pp. 980–983.

    Article  ADS  Google Scholar 

  44. Cloutier, P.A., Tascione, T.F., Daniell, E., et al., Physics of the interaction of the solar wind with the ionosphere of Venus: Flow/field models, in Venus, Hunten, D.M., Ed., Tucson: Univ. of Arizona, 1983, pp. 941–979.

    Google Scholar 

  45. Vignes, D., Acuña, M.H., Connerney, J.E.P., et al., Magnetic flux ropes in the Martian atmosphere: Global characteristics, in Mars’ Magnetism and its Interaction with the Solar Wind, Winterhalter, D., Acuña, M., and Zakharov, A., Eds., Dordrecht: Springer, 2004, pp. 223–231.

    Chapter  Google Scholar 

  46. Wolff, R.S., Goldstein, B.E., and Yeates, C.M, The onset and development of Kelvin–Helmholtz instability at the Venus ionopause, J. Geophys. Res., 1980, vol. 85, no. A13, pp. 7697–7707.

    Article  ADS  Google Scholar 

  47. Krymskii, A.M, On the stability of Venus’ ionopause, Kosm. Issled., 1987, vol. 25, no. 3, pp. 456–463.

    ADS  Google Scholar 

  48. Kireev, A.P. and Krymskii, A.M, Neutral atmosphere and crustal magnetization as factors determining differences in plasma convection and magnetic fields distribution in the ionospheres of Mars and Venus, Adv. Space Res., 2012, vol. 49, no. 3, pp. 458–466. doi 10.1016/j.asr.2011.09.025

    Article  ADS  Google Scholar 

  49. Luhmann, J.G. and Elphic, R.C, On the dynamo generation of flux ropes in the Venus ionosphere, J. Geophys. Res., 1985, vol. 90, pp. 12047–12056.

    Article  ADS  Google Scholar 

  50. Cole, K.D, Origin of flux ropes in Venus’ ionosphere, J. Geophys. Res., 1994, vol. 99, no. A8, pp. 14951–14958.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Breus.

Additional information

Original Russian Text © T.K. Breus, A.M. Krymskii, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 4, pp. 249–262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breus, T.K., Krymskii, A.M. Remnant magnetic fields of Mars and their interaction with the solar wind. Cosmic Res 55, 235–247 (2017). https://doi.org/10.1134/S0010952517040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517040025

Navigation