Skip to main content
Log in

Physicochemical model of the auroral ionosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A physicochemical model of excited polar ionosphere has been presented. The model makes it possible to calculate vertical profiles of concentrations of the following excited and ionized constituents: O2 +, N2 +, O+(4S), O+(2D), O+(2P), O(1D), O(1S), N(4S), N(2D), N(2P), NO, NO+, N+, N2(A3Σu +), N2(B3Пg), N2(W3Δu), and N2(B′3Σu -) and the electron concentration during electron precipitations. The energy spectrum of the electrons at the upper boundary of the ionosphere and concentrations of neutral constituents are the input parameters of the model. A model has been compiled based on available publications and includes 56 physicochemical reactions that influence concentrations of the aforementioned constituents in the polar ionosphere. The method of calculating vertical profiles of the excitation rates of atmospheric gases and proper allowance for the electron-vibrational kinetics in the processes of exciting the triplet states of N2 are specific features of the presented model. The ionospheric model has been approbated using the results of the coordinated rocket–satellite experiment. The agreement between the modeling results and experimental data best for the time being is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, R.A. and Rees, M.H., Time dependent studies of the aurora —1. Ion density and composition, Planet. Space Sci., 1973, vol. 21, no. 4, pp. 537–557.

    Article  ADS  MathSciNet  Google Scholar 

  2. Rees, M.H. and Jones, R.A., Time dependent studies of the aurora—2. Spectroscopic morphology, Planet. Space Sci., 1973, vol. 21, no. 7, pp. 1213–1235.

    Article  ADS  MathSciNet  Google Scholar 

  3. Rees, M.H., Stewart, A.I., Sharp, W.E., et al., Coordinated rocket and satellite measurements of an auroral event. 1. Satellite observation and analysis, J. Geophys. Res., 1977, vol. 82, no. 16, pp. 2250–2261.

    Article  ADS  Google Scholar 

  4. Sharp, W.E., Rees, M.H., and Stewart, A.I., Co-ordinated rocket and satellite measurements of an auroral events. 2. The rocket observations and analysis, J. Geophys. Res., 1979, vol. 84, no. A5, pp. 1977–1985.

    Article  ADS  Google Scholar 

  5. Gerard, J.-C. and Rusch, D.W., The auroral ionosphere: Comparison of time-dependent model with composition measurements, J. Geophys. Res., 1979, vol. 84, no. A8, pp. 4335–4340.

    Article  ADS  Google Scholar 

  6. Ivanov, V.E. and Sergienko, T.I., Vzaimodeistvie avroral’nykh elektronov s atmosfernymi gazami (statisticheskoe modelirovanie) (Interaction of Auroral Electrons with Atmospheric Gases (Statistical Modeling)), St. Petersburg: Nauka, 1992.

    Google Scholar 

  7. Sergienko, T.I. and Ivanov, V.E., A new approach to calculate the excitation of atmospheric gases by auroral electron impact, Ann. Geophys., 1993, vol. 11, no. 8, pp. 717–727.

    ADS  Google Scholar 

  8. Ivanov, V.E. and Kozelov, B.V., Prokhozhdenie elektronnykh i protonno-vodorodnykh puchkov v atmosfere Zemli (Propagation of Electron and Proton–Hydrogen Beams in the Earth’s Atmosphere), Apatity: Kol’skii nauchnyi tsentr RAN, 2001.

    Google Scholar 

  9. Lindinger, W., Fehsenfeld, F.C., Schmeltekopf, A.L., et al., Temperature dependence of some ionospheric ion-neutral reactions from 300 to 900 K, J. Geophys. Res., 1974, vol. 79, no. 31, pp. 4753–4756.

    Article  ADS  Google Scholar 

  10. McFarland, M., Albritton, D.L., Fehsenfeld, F.C., et al., Energy dependence and branching ratio of the N2 + + O reaction, J. Geophys. Res., 1974, vol. 79, no. 19, pp. 2925–2926.

    Article  ADS  Google Scholar 

  11. Fehsenfeld, F.C., Dunkin, D.B., and Ferguson, E.E., Rate constant for the reactions of with O, O2 and NO; N2 + with O and NO; and O2 + with NO, Planet. Space Sci., 1970, vol. 18, no. 8, pp. 1267–1270.

    Article  ADS  Google Scholar 

  12. Mul, P.M. and McGowan, J.W., Merged electron–ion beam experiments. III. Temperature dependence of dissociative recombination of atmospheric ions NO+, O2 + and N2 +, J. Phys. B, 1979, vol. 12, pp. 1591–1602.

    Article  ADS  Google Scholar 

  13. Queffelec, J.L., Rowe, B.R., Morlais, M., et al., The dissociative recombination of N2 + ( = 0.1) as source of metastable atoms in planetary atmosphere, Planet. Space Sci., 1985, vol. 33, no. 3, pp. 263–270.

    Article  ADS  Google Scholar 

  14. Abreu, V.J., Solomon, S.C., Sharp, W.E., et al., The dissociative recombination of the quantum yield of O(1S) and O(1D), J. Geophys. Res., 1983, vol. 88, no. A5, pp. 4140–4144.

    Article  ADS  Google Scholar 

  15. Fehsenfeld, F.C., The reaction of O2 + with atomic nitrogen and NO+ · H2O and NO2 + with atomic oxygen, Planet. Space Sci., 1977, vol. 25, no. 2, pp. 195–196.

    Article  ADS  Google Scholar 

  16. Kopp, J.P., Rusch, P.W., Roble, R.G., et al., Photoemission in the second position system of molecular nitrogen in the Earth’s dayglow, J. Geophys. Res., 1977, vol. 82, no. 4, pp. 555–560.

    Article  ADS  Google Scholar 

  17. Lindinger, W. and Ferguson, E.E., Laboratory investigation of the ionospheric O2 + (X2Πg, v = 0) reaction with NO, Planet. Space Sci., 1983, vol. 31, no. 10, pp. 1181–1182.

    Article  ADS  Google Scholar 

  18. Goldan, P.D., Schmeltekopf, A.L., Fehsenfeld, F.C., et al., Thermal energy ion-neutral reaction rates. II. Some reactions of ionospheric interest, J. Chem. Phys., 1966, vol. 44, no. 11, pp. 4095–4103.

    Article  ADS  Google Scholar 

  19. St-Mourice, J.-P. and Torr, D.G., Nonthermal rate coefficients in the ionosphere: The reaction of O+ with N2, O2 and NO, J. Geophys. Res., 1978, vol. 83, no. A3, pp. 969–977.

    Article  ADS  Google Scholar 

  20. Johnsen, R. and Biondi, M.A., Laboratory measurement of the O+(2D) + N2 and O+(2D) + O2 reaction rate coefficients and their ionospheric implications, Geophys. Res. Lett., 1980, vol. 7, no. 5, pp. 401–403.

    Article  ADS  Google Scholar 

  21. Torr, D.G. and Torr, M.R., Chemistry of the thermosphere and ionosphere, J. Atmos. Terr. Phys., 1979, vol. 41, nos. 7/8, pp. 797–839.

    Article  ADS  Google Scholar 

  22. Prandhan, A.K., Close-coupling calculations for electron collisions with O+ and for bound states of neutral oxygen, J. Phys. B: At. Mol. Phys., 1976, vol. 9, no. 3, pp. 433–443.

    Article  ADS  Google Scholar 

  23. Kernahan, J.H. and Pang, H.L., Experimental determination of absolute A coefficients for ‘forbidden’ atomic oxygen lines, Can. J. Phys., 1975, vol. 53, no. 5, pp. 455–458.

    Article  ADS  Google Scholar 

  24. Oppenheimer, M., Constantinides, E.R., Kirby-Docken, K., et al., Ion photochemistry of the thermosphere from Atmospheric Explorer-C measurements, J. Geophys. Res., 1977, vol. 82, no. 35, pp. 5485–5492.

    Article  ADS  Google Scholar 

  25. Rusch, D.W., Torr, D.G., Hays, P.B., et al., The OII (7319–7330 Å) dayglow, J. Geophys. Res., 1977, vol. 82, no. 4, pp. 719–722.

    Article  ADS  Google Scholar 

  26. Solomon, S.C., Hays, P.B., and Abreu, V.J., The auroral 6300 Å emission: Observations and modeling, J. Geophys. Res., 1988, vol. 93, no. A9, pp. 9867–9882.

    Article  ADS  Google Scholar 

  27. Wiese, W.L., Smith, M.W., and Glennon, B.M., Atomic Transition Probabilities, vol. 1, Washington, D.C.: National Bureau of Standards, 1966.

    Book  Google Scholar 

  28. Seaton, M.J. and Osterbrock, D.E., Relative OII intensities in gaseous nebulae, Astrophys. J., 1957, vol. 125, pp. 66–82.

    Article  ADS  Google Scholar 

  29. Henry, R.J., Burke, P.G., and Sinfailam, A.-L., Scattering of electrons by C, N, O, N+, O+ and O++, Phys. Rev., 1969, vol. 178, no. 1, pp. 218–225.

    Article  ADS  Google Scholar 

  30. Streit, G.E., Howard, C.J., Schmeltekopf, A.L., et al., Temperature dependence of O(1D) rate constants for reactions with O2, N2, CO2, O3, and H2O, J. Chem. Phys., 1976, vol. 65, no. 11, pp. 4761–4764.

    Article  ADS  Google Scholar 

  31. Abreu, V.J., Yee, J.H., Solomon, S.C., et al., The quenching rate of O(1D) by O(3P), Planet. Space Sci., 1986, vol. 34, no. 11, pp. 1143–1146.

    Article  ADS  Google Scholar 

  32. Fisher, C.F. and Saha, H.P., Multiconfiguration Hartree–Fock results with Breit–Pauli corrections for forbidden transitions in the 2p 4 configuration, Phys. Rev. A, 1983, vol. 28, no. 6, pp. 3169–3178.

    Article  ADS  Google Scholar 

  33. Berrington, K.A. and Burke, P.G., Effective collision strengths for forbidden transitions in e-N and e-O scattering, Planet. Space Sci., 1981, vol. 29, no. 3, pp. 377–380.

    Article  ADS  Google Scholar 

  34. Slander, T.G. and Black, G., Quenching of O(1S) by O2(a1Δg), Geophys. Res. Lett., 1981, vol. 8, no. 5, pp. 535–538.

    Article  ADS  Google Scholar 

  35. Slander, T.G. and Black, G., O(1S) quenching profile between 75 and 115 km, Planet. Space Sci., 1973, vol. 21, no. 10, pp. 1757–1762.

    Article  ADS  Google Scholar 

  36. Black, G., Slander, T.G., St. John, G.A., et al., Vacuumultraviolet photolysis of N2O. IV. Deactivation of N(2D), J. Chem. Phys., 1969, vol. 51, no. 1, pp. 116–121.

    Article  ADS  Google Scholar 

  37. De More, W.B., Sander, S.P., Golden, D.M., et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (Evaluation Number 9, JPL Publication 90-1), Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, 1990.

    Google Scholar 

  38. Gerard, J.-C., Thermospheric odd nitrogen, Planet. Space Sci., 1992, vol. 40, nos. 2/3, pp. 337–353.

    Article  ADS  Google Scholar 

  39. Lin, C.-L. and Kaufman, F., Reactions of metastable nitrogen atoms, J. Chem. Phys., 1971, vol. 55, no. 8, pp. 3760–3769.

    Article  ADS  Google Scholar 

  40. Link, R., A rocket observation of 6300 Å /5200 Å intensity ratio in the dayside aurora: Implications for the production of O(1D) via the reaction N(2D) + O2 → NO + O(1D), Geophys. Res. Lett., 1983, vol. 10, no. 3, pp. 225–228.

    Article  ADS  MathSciNet  Google Scholar 

  41. Fell, C., Steinfeld, J.I., and Miller, S., Quenching of N(2D) by O(3P), J. Chem. Phys., 1990, vol. 92, no. 8, pp. 4768–4777.

    Article  ADS  Google Scholar 

  42. Schofield, K., Critically evaluated rate constants for gaseous reactions of several electronically excited species, J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 3, pp. 723–798.

    Article  ADS  Google Scholar 

  43. Frederick, J.E. and Rusch, D.W., On the chemistry of metastable atomic nitrogen in the F region deduced from simultaneous satellite measurement of the 5200-Å airglow and atmospheric composition, J. Geophys. Res., 1977, vol. 82, no. 25, pp. 3509–3517.

    Article  ADS  Google Scholar 

  44. Bates, D.R., Theoretical considerations regarding some inelastic atomic collision processes of interest in aeronomy: Deactivation and charge transfer, Planet. Space Sci., 1989, vol. 37, no. 3, pp. 363–368.

    Article  ADS  Google Scholar 

  45. Garstang, R.H., Transition probabilities in auroral lines, in Airglow and Aurora, New York: Pergamon, 1956, pp. 324–327.

    Google Scholar 

  46. Herron, J.T., Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3Σu +) in the gas phase, J. Phys. Chem. Ref. Data, 1999, vol. 28, no. 5, pp. 1453–1483.

    Article  ADS  Google Scholar 

  47. Kley, D., Lawrence, G.M., and Stone, E.J., The yield of N(2D) atoms in the dissociative recombination of NO+, J. Chem. Phys., 1977, vol. 66, no. 9, pp. 4157–4165.

    Article  ADS  Google Scholar 

  48. Langford, A.O., Bierbaum, V.M., and Leone, S.R., Auroral implications of recent measurements on O(1S) and O(1D) formation in the reaction of N+ with O2, Planet. Space Sci., 1985, vol. 33, no. 10, pp. 1225–1228.

    Article  ADS  Google Scholar 

  49. Torr, M.R., The NII 2143 Å dayglow from Spacelab 1, J. Geophys. Res., 1985, vol. 90, no. 7, pp. 6679–6684.

    Article  ADS  Google Scholar 

  50. Kirillov, A.S. and Aladjev, G.A., The role of the N2(A3Σu +, v) + O reaction in the green line airglowand vibrational kinetics of molecular nitrogen in the highlatitude upper atmosphere, Cosmic Res., 1998, vol. 36, no. 5, pp. 423–429.

    ADS  Google Scholar 

  51. Morrill, J.S. and Benesch, W.M., Auroral N2 emissions and effect of collisional processes on N2 state vibrational populations, J. Geophys. Res., 1996, vol. 101, no. A1, pp. 261–274.

    Article  ADS  Google Scholar 

  52. Gilmore, F.R., Laher, R.R., and Espy, P.J., Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems, J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 5, pp. 1005–1107.

    Article  ADS  Google Scholar 

  53. Kirillov, A.S., The study of intermolecular energy transfers in electronic energy quenching for molecular collisions N2–N2, N2–O2, O2–O2, Ann. Geophys., 2008, vol. 26, pp. 1149–1157.

    Article  ADS  Google Scholar 

  54. Thomas, J.M. and Kaufman, F., Rate constants of the reactions of metastable N2(A3Σu +) in v = 0, 1, 2, and 3 with ground state O2 and O, J. Chem. Phys., 1985, vol. 83, no. 6, pp. 2900–2903.

    Article  ADS  Google Scholar 

  55. Jones, R.A. and Gattinger, R.L., Quenching of the N2 Vegard–Kaplan system in aurora, J. Geophys. Res., 1976, vol. 81, no. 4, pp. 497–450.

    Article  ADS  Google Scholar 

  56. Eastes, R.W. and Sharp, W.E., Rocket-borne spectroscopic measurements in the ultraviolet aurora: The Lyman–Birge–Hopfield bands, J. Geophys. Res., 1987, vol. 92, no. A9, pp. 10095–10100.

    Article  ADS  Google Scholar 

  57. MSIS-E-90 Atmosphere Model. http://omniweb. gsfc.nasa.gov/vitmo/msis_vitmo.html.

  58. Sharp, W.E., NO2 continuum in aurora, J. Geophys. Res., 1978, vol. 83, pp. 4373–4376.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Dashkevich.

Additional information

Original Russian Text © Zh.V. Dashkevich, V.E. Ivanov, T.I. Sergienko, B.V. Kozelov, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 2, pp. 94–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashkevich, Z.V., Ivanov, V.E., Sergienko, T.I. et al. Physicochemical model of the auroral ionosphere. Cosmic Res 55, 88–100 (2017). https://doi.org/10.1134/S0010952517020022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517020022

Navigation