Skip to main content
Log in

Theory of physical libration of the Moon caused by a liquid core: Cassini’s motion

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This is the first part of a study to develop a modern theory of physical libration of the Moon caused by a liquid core. We use a special approach to studying Moon’s rotation relying on Poincaré’s planetary model and special forms of equations of motion in Andoyer and Poincaré variables. We construct expansions of the force function of the problem (the second harmonic of the selenopotential) in Andoyer and Poincaré variables for a high-precision description of disturbed orbital motion of the Moon. We investigate the main regularities in lunar rotational motion taken as a body with a solid nonspherical mantle and an ellipsoidal liquid core. The motion of the ideal liquid of the core is simple according to Poincaré. The Cassini laws can be dinamically interpreted for the motion of a synchronous satellite with a liquid core. The Cassini angle (the inclination of the rotation axis relative to the normal to the ecliptic plane) determined by us is very consistent with its determinations from laser observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber, R.C., Lin, P.-Y., Garnero, E.J., et al., Seismic detection of the lunar core, Science, 2011, vol. 331, no. 6015, pp. 309–312.

    Article  ADS  Google Scholar 

  2. Poincaré, H., Sur la précession des corps déformables, Bull. Astron., 1910, vol. 27, pp. 321–356.

    Google Scholar 

  3. Barkin, Yu.V., Hanada, H., Matsumoto, K., et al., The effects of the physical librations of the Moon, caused by a liquid core and their possible detection from the longterm laser observations and in the Japanese lunar project ILO, in Book of Abstracts of the Third Moscow Solar System Symposium (SM-S3), 8–12 October 2012, Moscow, Russia, 2012, abstract 3MS3-MN-10, pp. 18–19. http://ms2012.cosmos.ru/3ms3-mn-10_h._hanada_2012_iki_moon_librations_121005.pdf.

    Google Scholar 

  4. Kudryavtsev, S.M., Long-term harmonic development of lunar ephemeris, Astron. Astrophys, 2007, vol. 471, no. 3, pp. 1069–1075. doi 10.1051/0004-6361:20077568

    Article  ADS  Google Scholar 

  5. Barkin, Yu.V., Kudryavtsev, S.M., and Barkin, M.Yu., Perturbations of the first order of the moon rotation, in Proceedings of the International Conference “Astronomy and World Heritage: Across Time and Continents” (Kazan, 19–24 August 2009), Kazan: KSU, 2009, pp. 161–164.

    Google Scholar 

  6. Barkin, Yu.V. and Ferrándiz, J.M., New approach to development of Moon rotation theory, in The 35th Lunar and Planetary Science Conference, League City, Texas, 2004, abstract no. 1294. http://adsabs.harvard.edu/abs/2004LPI….35.1294B.

    Google Scholar 

  7. Rambaux, N. and Williams, J.G., The Moon’s physical librations and determination of their free modes, Celestial Mech. Dyn. Astron., 2011, vol. 109, no. 1, pp. 85–100. doi 10.1007/s10569-010-9314-2

    Article  ADS  MATH  Google Scholar 

  8. Williams, J.G., Boggs, D.H., and Turyshev, S.G., LLR analysis—JPL model and data analysis, California Institute of Technology LLR Workshop, Harvard, Boston, MADecember 9–10, 2010.

    Google Scholar 

  9. Williams, J.G., Boggs, D.H., and Ratcliff, J.T., Lunar moment of inertia and Love number, in The 42nd Lunar and Planetary Science Conference, 2011.

    Google Scholar 

  10. Williams, J.G., Boggs, D.H., and Ratcliff, J.T., Lunar moment of inertia, Love number and core, in The 43rd Lunar and Planetary Science Conference, 2012.

    Google Scholar 

  11. Lamb, H., Hydrodynamics, New York: Dover Publications, 1945.

    MATH  Google Scholar 

  12. Araki, H, Tazawa, S., Noda, H., et al., Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry, Science, 2009. V. 323, no. 5916, pp. 897–900. doi 10.1126/science.1164146

    Article  ADS  Google Scholar 

  13. Williams, J.G., Boggs, D.H., Yoder, C.F., et al., Lunar rotational dissipation in solid body and molten core, J. Geophys. Res.: Planets, 2001, vol. 106, no. E11, pp. 27933–27968.

    Article  ADS  Google Scholar 

  14. Matsumoto, K., Goossens, S., Ishihara, Y., et al., An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features, J. Geophys. Res., 2010, vol. 115, E06007. doi 10.1029/2009JE003499

    ADS  Google Scholar 

  15. Sevilla, M. and Romero, P., Polar motion for an elastic Earth model with a homogeneous liquid core using a canonical theory, Bull. Géod., 1987, vol. 61, no. 1, pp. 1–20.

    Article  Google Scholar 

  16. Ferrándiz, J.M. and Barkin, Yu.V., Model of the Earth with the eccentric and the moveable liquid core, Journées Systèmes de Référence Spatio-Temporels and IXLohrmann-Kolloquium, Dresden, Germany, 13–15 September 1999, Motion of Celestial Bodies, Astrometry and Astronomical Reference Frames, Soffel, M. and Capitaine, N., Eds., Dresden, Germany: Senckenberg naturhistorische Sammlungen Dresden, 2000, p. 192.

    Google Scholar 

  17. Ferrándiz, J.M. and Barkin, Yu.V., On integrable cases of the Poincaré problem, Astron. Astrophys. Trans., 2001, vol. 19, pp. 769–780.

    Article  Google Scholar 

  18. Barkin, Yu.V., An analytical theory of the lunar rotational motion, in Proceedings of the International Symposium Figure and Dynamics of the Earth, Moon and Planets (September 15–20, 1986, Prague, Czechoslovakia), Holota, P., Ed., Prague, 1987, pp. 657–677.

    Google Scholar 

  19. Barkin, Yu.V., Dynamics of the system of nonspherical celestial bodies and theory of a rotating Moon, Doctoral (Phys.–Math.) Dissertation, Moscow: Sternberg Astronomical Institute, Moscow State University, 1989.

    Google Scholar 

  20. Kinoshita, H., Theory of rotation of the rigid Earth, Celestial Mech., 1977, vol. 15, pp. 277–326.

    Article  ADS  MathSciNet  Google Scholar 

  21. Sasao, T., Okubo, S., and Saito, M., A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth, in nutation and the Earth rotation, Proc. IAU Symp., 1980, no. 78, pp. 165–183.

    ADS  Google Scholar 

  22. Beletskii, V.V., On Cassini’s laws, Preprint 79 of Inst. Appl. Math. USSR Acad. Sci., 1971.

    Google Scholar 

  23. Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Artificial Satellite Motion Relative to the Center of Mass), Moscow: Nauka, 1965.

    Google Scholar 

  24. Beletskii, V.V., Dvizhenie sputnika otnositel’no tsentra mass v gravitatsionnom pole (Satellite Motion Relative to the Center of Mass in the Gravitational Field), Moscow: Mosk. Gos. Univ., 1975.

    Google Scholar 

  25. Simon, J.L., Bretagnon, P., Chapront, J., et al., Numerical expressions for precession formulae and mean elements for the Moon and planets, Astron. Astrophys., 1994, no. 282, pp. 663–683.

    ADS  Google Scholar 

  26. Getino, J. and Ferrándiz, J.M., A Hamiltonian theory for an elastic Earth: Secular rotational acceleration, Celestial Mech., 1991, vol. 52, pp. 381–396.

    Article  ADS  MathSciNet  Google Scholar 

  27. Navarro, J.F., Teoría analítica de la rotación de la tierra rígida mediante manipulación simbólica especifica, Doctoral Dissertation, Alicante, Department of Applied Mathematics, University of Alicante, 2006.

    Google Scholar 

  28. Calame, O., Free librations of the Moon determined by an analysis of laser range measurements, The Moon, 1976, vol. 15, nos. 3–4, pp. 343–352.

    Article  ADS  Google Scholar 

  29. Cassini, J.D., Traité de l’origine et du progrès de l’astronomie, Paris. 1693.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Barkin.

Additional information

Original Russian Text © Yu.V. Barkin, 2016, published in Kosmicheskie Issledovaniya, 2016, Vol. 54, No. 4, pp. 347–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkin, Y.V. Theory of physical libration of the Moon caused by a liquid core: Cassini’s motion. Cosmic Res 54, 325–342 (2016). https://doi.org/10.1134/S0010952516030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952516030023

Navigation