Skip to main content
Log in

Abrupt changes of density in sporadic solar wind and their effect on Earth magnetosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In a magnetic cloud, which is part of a sporadic solar wind on the Earth orbit, against the background of a constant solar wind velocity, abrupt jumps in the solar wind density and antiphase, highly correlated (correlation coefficient R∼−0.9) variations of the magnitude of the strength of the interplanetary magnetic field were detected. Analysis has shown that these jumps, which represent fibers or eruptive protuberances, result, when interacting with the Earth magnetosphere, in the development of a high-latitude magnetic disturbance, starting on the dayside and propagating into the morning and evening sides of the magnetosphere. The processes, developing in the auroral region during this disturbance, are similar to processes occurring during the substorm, but they are characterized by a shorter duration and lower value of released energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eselevich, V.G., Kaigorodov, A.P., and Fainshtein, V.G., Some peculiarities of solar plasma fluxes from coronal holes, Planet. Space Sci., 1990, vol.38, no. 4, p. 459.

    Article  ADS  Google Scholar 

  2. Schwenn, R. and Marsch, E., Physics of the Inner Heliosphere, vols. I, II, Berlin Heidelberg: SpringerVerlag, 1991.

    Book  Google Scholar 

  3. McComas, D.J., Elliott, H.A., and von Steiger, R., Solar wind from high latitude CH at solar maximum, Geophys. Res. Lett., 2002, vol.29, no. 9, p. 28. doi 10.1029/2001GL013940

    Google Scholar 

  4. Svalgaard, L.J., Wilcox, W., and Duvall, T.L., A model combining the solar magnetic field, Solar Phys., 1974, vol.37, p. 157.

    Article  ADS  Google Scholar 

  5. Eselevich, M.V., Eselevich, V.G., and Fujiki, K., Streamer belt and chains as the main sources of quasistationary slow solar wind, Solar Phys., 2007, vol.240, p. 135.

    Article  ADS  Google Scholar 

  6. Eselevich, V.G., Fainshtein, V.G., and Rudenko, G.V., Study of the structure of streamer belts and chains in the solar corona, Solar Phys., 1999, vol.188, no. 2, p. 277.

    Article  ADS  Google Scholar 

  7. Wang, Y.M., Sheeley N.R., and Rich, N.B., Coronal pseudostreamers, Astrophys. J., 2007, vol.685, p. 1340.

    Article  ADS  Google Scholar 

  8. Khabarova, O. and Zastenker, G., Sharp changes of solar wind ion flux and density within and outside current sheets, Solar. Phys., 2011, vol.270, no. 1, p. 311. doi 10.1007/s11207-011-9719-4

    Article  ADS  Google Scholar 

  9. Parkhomov, V.A., Riazantseva, M.O., and Zastenker, G.N., Local amplification of auroral electrojet as response to a sharp solar wind pressure pulse, Planet. Space Sci., 2005, vol.53, no. 1–3, p. 265.

    Article  ADS  Google Scholar 

  10. Borodkova, N.L., Effect of large and sharp changes of solar wind dynamic pressure on the Earth’s magnetosphere: Analysis of several events, Cosmic Res., 2010, vol.48, no. 1, p. 41.

    Article  ADS  Google Scholar 

  11. Parkhomov, V.A., Borodkova, N.L., Dmitriev, A.V., et al., The role of solar wind pressure jumps in the initiation and control processes of magnetospheric substorms, Geomagn. Aeron., 2011, vol.51, no. 7, p. 979.

    Article  ADS  Google Scholar 

  12. Safrankova, J., Zastenker, G., Nemecek, Z., et al., Small scale observation of magnetopause motion: Preliminary results of the INTERBALL project, Ann. Geophys., 1997, vol.15, p. 562.

    Article  ADS  Google Scholar 

  13. Klimov, S.I., Romanov, S.A., Amata, E., et al., ASPI experiment: measurements of fields and waves onboard the INTERBALL-1 spacecraft, Ann. Geophys., 1997, vol.15, no. 5, p. 514.

    Article  ADS  Google Scholar 

  14. Burlaga, L., Sitteler, E, Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP8 observations, J. Geophys. Res., 1981, vol.86, no. 8, p. 6673.

    Article  ADS  Google Scholar 

  15. Burlaga, L., Klein, L., Sheeley, M., Jr., et al., A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 1982, vol.9, no. 12, p. 1317.

    Article  ADS  Google Scholar 

  16. Burlaga, L., Micro-scale structure in the interplanetary medium, Solar Phys., 1968, no. 4, p. 67.

    Article  ADS  Google Scholar 

  17. Tung-Shin Hsu and McPherron, R.L., An evaluation of statistical significance of the association between northward turning of the interplanetary magnetic field and substorm expansion onsets, J. Geophys. Res., 2002. vol. 107, no. A11, p. 1308. doi 10.1029/2000JA000125

    Google Scholar 

  18. Xiaoyan, Zh. and Tsurutani, B.T., Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events, J. Geophys. Res., 2001. vol. 106, no. A9, p. 18957.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Parkhomov.

Additional information

Original Russian Text © V.A. Parkhomov, N.L. Borodkova, V.G. Eselevich, M.V. Eselevich, 2015, published in Kosmicheskie Issledovaniya, 2015, Vol. 53, No. 6, pp. 449–460.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomov, V.A., Borodkova, N.L., Eselevich, V.G. et al. Abrupt changes of density in sporadic solar wind and their effect on Earth magnetosphere. Cosmic Res 53, 411–422 (2015). https://doi.org/10.1134/S0010952515050093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952515050093

Keywords

Navigation