Skip to main content
Log in

Detonation Decomposition of Acetylene at Atmospheric Pressure in the Presence of Small Additives of Oxygen

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A pulse gas-detonation device (PGDD) is applied to investigate the process of initiation and detonation in C2H2+\(k\)O2 acetylene–oxygen mixtures, including those with a low oxygen content near the upper detonation concentration limit, at initial atmospheric pressure. Cell sizes, detonation velocities, and pressures in detonation products are measured in a range of \(k\) from zero to unity. The detonation product composition is calculated. Upper detonation limits in the PGDD barrels with diameters of 14, 26, 46, and 104 mm are determined. The volume of booster charges required to initiate detonation in the limiting modes are revealed. As for the hydrogen energy industry, the methane \(\to\) acetylene \(\to\) hydrogen + nanosized detonation carbon technological chain is considered, and the characteristics of the PGDD as a hydrogen generator are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. A. A. Shtertser, V. Yu. Ulianitsky, D. K. Rybin, et al., “Production of Hydrogen and Carbon Black by Detonation of Fuel-Rich Acetylene–Oxygen Mixtures," Int. J. Hydrogen Energy 47 (30), 14039–14043 (2022); DOI: 10.1016/j.ijhydene.2022.02.164.

    Article  Google Scholar 

  2. G. B. Kistiakovsky, G. D. Halsey, M. E. Malin, and H. T. Knight, “Detonation Process of Making Carbon Black," US Patent No. 2690960, Patented October 5, 1954.

  3. V. G. Knorre, T. D. Snegireva, T. V. Tekunova, et al., “A Study of the Thermal Decomposition of Acetylene and the Properties of the Soot Formed under the Conditions of a Constant Volume Bomb," Fiz. Goreniya Vzryva 8 (4), 532–535 (1972) [Combust., Expl., Shock Waves 8 (4), 437–439 (1972); DOI: 10.1007/BF00741200.

    Article  Google Scholar 

  4. V. G. Knorre, M. S. Kopylov, and P. A. Tesner, “Formation of Carbon Black with the Detonation of Acetylene," Fiz. Goreniya Vzryva 10 (5), 767–771 (1974) [Combust., Expl., Shock Waves 10 (5), 690–694 (1974); DOI: 10.1007/BF01463987].

    Article  Google Scholar 

  5. Ullmann’s Encyclopedia of Industrial Chemistry. Acetylene (Wiley-VCH Verlag GmbH & Co, Weinheim, 2012); DOI: 10.1002/14356007.a01_097.pub4.

  6. V. Vyntu, Petrochemical Production Technology, Ed. by V. I. Isangulyants (Khimiya, Moscow, 1968) [in Russian].

    Google Scholar 

  7. Z. F. Bian, W. Q. Zhong, Y. Yang, et al., “Dry Reforming of Methane on Ni/Mesoporous-Al2O3 Catalysts: Effect of Calcination Temperature," Int. J. Hydrogen Energy 46 (60), 31041–31053 (2021); DOI: 10.1016/j.ijhydene.2020.12.064.

    Article  Google Scholar 

  8. A. V. Porsin, A. V. Kulikov, Yu. I. Amosov, et al., “Acetylene Synthesis by Methane Pyrolysis on a Tungsten Wire," Teor. Osn. Khim. Tekhnol. 48 (4), 426–433 (2014) [Theor. Found. Chem. Eng. 48 (4), 397–403 (2014); DOI: 10.1134/S0040579514040241].

    Article  Google Scholar 

  9. G. G. Garifzyanova, “Some Aspects of Acetylene Production from Methane Using Low-Temperature Plasma," Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 51 (11), 98–100 (2008).

    Article  Google Scholar 

  10. A. V. Lavrenov, E. A. Buluchevskii, V. A. Likholobov, et al., “Method for Acetylene Production from Methane," RF Patent No. 2575007, Publ. February 10, 2016; Bull. No. 4.

  11. M. El-Shafie, S. Kambara, and Y. Hayakawa, “Hydrogen Production Technologies Overview," J. Power Energy Eng. 7 (1), 107–154 (2019); DOI: 10.4236/jpee.2019.71007.

    Article  Google Scholar 

  12. G. Petitpas, J.-D. Rollier, A. Darmon, et al., “A Comparative Study of Non-Thermal Plasma Assisted Reforming Technologies," Int. J. Hydrogen Energy 32 (14), 2848–2867 (2007); DOI: 10.1016/j.ijhydene.2007.03.026.

    Article  Google Scholar 

  13. V. I. Manzhalei, “Detonation of Acetylene near the Limit," Fiz. Goreniya Vzryva 11 (1), 146–149 (1975) [Combust., Expl., Shock Waves 11 (1), 128–130 (1975); DOI: 10.1007/BF00742874].

    Article  Google Scholar 

  14. A. A. Shtertser, V. Yu. Ulianitsky, I. S. Batraeva, and D. K. Rybin, “Production of Nanoscale Detonation Carbon using a Pulse Gas-Detonation Device," Pis’ma Zh. Tekh. Fiz. 44 (9), 65–72 (2018) [Tech. Phys. Lett. 44 (9), 395–397 (2018); DOI: 10.1134/S1063785018050139].

    Article  ADS  Google Scholar 

  15. A. A. Shtertser, D. K. Rybin, V. Yu. Ulianitsky, et al., “Characterization of Nanoscale Detonation Carbon Produced in a Pulse Gas-Detonation Device," Diamond Relat. Mater. 101, 107553 (2020); DOI: 10.1016/j.diamond.2019.107553.

    Article  ADS  Google Scholar 

  16. E. R. Pruuel and A. A. Vasil’ev, “Equation of State of Gas Detonation Products. Allowance for the Formation of the Condensed Phase of Carbon," Fiz. Goreniya Vzryva 57 (5), 74–85 (2021) [Combust., Expl., Shock Waves 57 (5), 576–587 (2021); DOI: 10.1134/S0010508221050075].

    Article  Google Scholar 

  17. V. Yu. Ulianitsky, “CCDS2000—New Generation Equipment for Detonation Spraying," Uproch. Tekhnol. Pokr., No. 10, 36–41 (2013).

  18. V. Ulianitsky, A. Shtertser, S. Zlobin, I. Smurov, “Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications," J. Therm. Spray Technol. 20 (4), 791–801 (2011); DOI: 10.1007/s11666-011-9649-6.

    Article  ADS  Google Scholar 

  19. A. A. Vasilev, Y. A. Nikolaev, and V. Y. Ul’yanitskii, “Critical Energy of Initiation of a Multifront Detonation," Fiz. Goreniya Vzryva 15 (6), 94–104 (1979) [Combust., Expl., Shock Waves 15 (6), 768–775 (1979); DOI: 10.1007/BF00739867].

    Article  Google Scholar 

  20. V. Y. Ul’yanitskii, “Closed Model of Direct Initiation of Gas Detonation Taking Account of Instability. I. Point Initiation," Fiz. Goreniya Vzryva 16 (3), 101–113 (1980) [Combust., Expl., Shock Waves 16 (3), 331–341 (1980); DOI: 10.1007/BF00742137].

    Article  Google Scholar 

  21. I. S. Batraev, A. A. Vasil’ev, V. Y. Ul’yanitskii, et al., “Investigation of Gas Detonation in Over-Rich Mixtures of Hydrocarbons with Oxygen," Fiz. Goreniya Vzryva 54 (2), 89–97 (2018) [Combust., Expl., Shock Waves 54 (2), 207–215 (2018); DOI: 10.1134/S0010508218020107].

    Article  Google Scholar 

  22. A. A. Vasil’ev and A. V. Pinaev, “Formation of Carbon Clusters in Deflagration and Detonation Waves in Gas Mixtures," Fiz. Goreniya Vzryva 44 (3), 81–94 (2008) [Combust., Expl., Shock Waves 44 (3), 317–329 (2008); DOI: 10.1007/s10573-008-0040-y].

    Article  Google Scholar 

  23. V. Y. Ul’yanitskii, A. A. Shtertser, and I. S. Batraev, “Detonation of a Gas Fuel Based on Methyl Acetylene and Allene," Fiz. Goreniya Vzryva 51 (2), 118–124 (2015) [Combust., Expl., Shock Waves 51 (2), 246–251 (2015); DOI: 10.1134/S0010508215020082].

    Article  Google Scholar 

  24. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1972; Academic Press, 1959).

    MATH  Google Scholar 

  25. V. Y. Ul’yanitskii, “Galloping Mode in a Gas Detonation," Fiz. Goreniya Vzryva 17 (1), 118–124 (1981) [Combust., Expl., Shock Waves 17 (1), 93–97 (1981); DOI: 10.1007/BF00772793].

    Article  Google Scholar 

  26. V. Y. Ul’yanitskii, “Experimental Investigation of the Volumetric Structure of a Spinning Detonation," Fiz. Goreniya Vzryva 16 (1), 105–111 (1980) [Combust., Expl., Shock Waves 16 (1), 99–103 (1980); DOI: 10.1007/BF00756251].

    Article  Google Scholar 

  27. D. K. Dinh, D. H. Lee, Y.-H. Song, et al., “Efficient Methane-To-Acetylene Conversion Using Low-Current Arcs," RSC Adv. 9, 32403–32413 (2019); DOI: 10.1039/c9ra05964d.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shtertser.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 89-99. https://doi.org/10.15372/FGV20220608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtertser, A.A., Ul’yanitskii, V.Y., Rybin, D.K. et al. Detonation Decomposition of Acetylene at Atmospheric Pressure in the Presence of Small Additives of Oxygen. Combust Explos Shock Waves 58, 709–718 (2022). https://doi.org/10.1134/S0010508222060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222060089

Keywords

Navigation